editor's blog
Subscribe Now

Cavium’s Comms Integration

Communications chips have typically been dedicated to a specific piece of the complicated comms technology puzzle everywhere except in handsets, where space drives integration. But now, pieces that used to reside in separate chips are starting to come together. We saw that recently with Netlogic, and now Cavium has declared further integration in their just-announced OCTEON Fusion family, albeit for a different application: a “base station on a chip.”

It combines their MIPS-based multicore architecture with baseband DSP cores, hardware accelerators for LTE/3G functions, and their digital front end.

The idea here is not so much to shrink traditional base stations, but rather to simplify the creation and deployment of the base stations for the smaller cells that are starting to proliferate in densely populated areas and even inside buildings: the so-called micro-, pico-, and femtocells. In other words, smaller cells should have smaller base stations. (Who wants a big cabinet in their house just to fix the crappy cell coverage in the neighborhood?)

When you look up the definitions of what distinguishes these three categories of cell from standard (macro-) cells and from each other, you’ll typically see definitions that relate to the size of the cell. Which mostly determines signal power, really. When it comes to the amount of processing power you need, it’s the number of calls or users you’re handling that matters.

So I asked Cavium how they define these cells in terms of user load, and they identified the four following categories:

–          Microcell: 256+ users

–          Picocell: 128+ users

–          Enterprise femtocell: 32-64 users

–          Home femtocell: 4 users

They address these with three family members: the CNF7120 for 64 users; the CNF7130 for 256 users, and the CNF7280 for 300+ users.

More info in their press release

Leave a Reply

featured blogs
Mar 28, 2024
The difference between Olympic glory and missing out on the podium is often measured in mere fractions of a second, highlighting the pivotal role of timing in sports. But what's the chronometric secret to those photo finishes and record-breaking feats? In this comprehens...
Mar 26, 2024
Learn how GPU acceleration impacts digital chip design implementation, expanding beyond chip simulation to fulfill compute demands of the RTL-to-GDSII process.The post Can GPUs Accelerate Digital Design Implementation? appeared first on Chip Design....
Mar 21, 2024
The awesome thing about these machines is that you are limited only by your imagination, and I've got a GREAT imagination....

featured video

We are Altera. We are for the innovators.

Sponsored by Intel

Today we embark on an exciting journey as we transition to Altera, an Intel Company. In a world of endless opportunities and challenges, we are here to provide the flexibility needed by our ecosystem of customers and partners to pioneer and accelerate innovation. As we leap into the future, we are committed to providing easy-to-design and deploy leadership programmable solutions to innovators to unlock extraordinary possibilities for everyone on the planet.

To learn more about Altera visit: http://intel.com/altera

featured chalk talk

GaN Solutions Featuring EcoGaN™ and Nano Pulse Control
In this episode of Chalk Talk, Amelia Dalton and Kengo Ohmori from ROHM Semiconductor examine the details and benefits of ROHM Semiconductor’s new lineup of EcoGaN™ Power Stage ICs that can reduce the component count by 99% and the power loss of your next design by 55%. They also investigate ROHM’s Ultra-High-Speed Control IC Technology called Nano Pulse Control that maximizes the performance of GaN devices.
Oct 9, 2023
22,369 views