editor's blog
Subscribe Now

Cavium’s Comms Integration

Communications chips have typically been dedicated to a specific piece of the complicated comms technology puzzle everywhere except in handsets, where space drives integration. But now, pieces that used to reside in separate chips are starting to come together. We saw that recently with Netlogic, and now Cavium has declared further integration in their just-announced OCTEON Fusion family, albeit for a different application: a “base station on a chip.”

It combines their MIPS-based multicore architecture with baseband DSP cores, hardware accelerators for LTE/3G functions, and their digital front end.

The idea here is not so much to shrink traditional base stations, but rather to simplify the creation and deployment of the base stations for the smaller cells that are starting to proliferate in densely populated areas and even inside buildings: the so-called micro-, pico-, and femtocells. In other words, smaller cells should have smaller base stations. (Who wants a big cabinet in their house just to fix the crappy cell coverage in the neighborhood?)

When you look up the definitions of what distinguishes these three categories of cell from standard (macro-) cells and from each other, you’ll typically see definitions that relate to the size of the cell. Which mostly determines signal power, really. When it comes to the amount of processing power you need, it’s the number of calls or users you’re handling that matters.

So I asked Cavium how they define these cells in terms of user load, and they identified the four following categories:

–          Microcell: 256+ users

–          Picocell: 128+ users

–          Enterprise femtocell: 32-64 users

–          Home femtocell: 4 users

They address these with three family members: the CNF7120 for 64 users; the CNF7130 for 256 users, and the CNF7280 for 300+ users.

More info in their press release

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys 112G Ethernet IP Interoperating with Optical Components & Equalizing E-O-E Link

Sponsored by Synopsys

This OFC 2022 demo features the Synopsys 112G Ethernet IP directly equalizing electrical-optical-electrical (E-O-E) channel and supporting retimer-free CEI-112G linear drive for low-power applications.

Learn More

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Simplifying Brushless Motor Controls with Toshiba Motor Control Solutions

Sponsored by Mouser Electronics and Toshiba

Making sure your motor control design is efficient and ready for primetime can be a complicated process. In this episode of Chalk Talk, Amelia Dalton chats with Alan Li from Toshiba about the basics of brushless motor control, more advanced variables including lead angle control and intelligent phase control and most importantly, how you can simplify your next brushless motor control design.

Click here for more information about Toshiba Brushless Motor Driver ICs