feature article
Subscribe Now

WattIQ Uses Its Power for Good

Powerline Monitors Take the Place of Missing Maintenance Networks

“You can observe a lot just by watching.” – Yogi Berra

Think of a big pharmaceutical laboratory. People in white lab coats. Big shiny pieces of equipment humming. Lots of high-tech centrifuges, spectrometers, and analyzers. Everything’s clean. Even the refrigerators look special. 

You know what you don’t see? A network. 

Turns out, all those advanced pieces of equipment don’t talk to each other, nor do they connect to any central laboratory-wide network. Each one is more or less an island, technologically speaking. That might be a problem. Or, at least, an opportunity. 

If you’re an IT manager overseeing a big server farm, then of course you want real-time monitoring of your machines. You want to track and measure uptime, traffic, performance, heat, power consumption, and a dozen other criteria that might help you optimize the server workloads or alert you to failures. But if you’re managing tons of lab equipment? Keep hoping. 

Enter WattIQ, a 12-person company that previously went by the name Ibis Networks. The rebranded firm is now in the asset-management business, with a particular focus on pharma labs. They essentially retrofit a monitoring network onto all that shiny expensive lab equipment. 

How does it work? By monitoring AC power usage. WattIQ’s hardware looks a bit unimpressive at first, like an upgraded “smart plug” you’d buy online to control your table lamp. The InteliSocket (as it’s called) plugs into the wall outlet, and your centrifuge or whatever plugs into that. The InteliSocket then monitors the machine’s power usage 24/7, sending regular updates wirelessly to WattIQ’s central hub located elsewhere in the lab. Add one InteliSocket to each major piece of lab equipment, and you’ve got yourself a laboratory-wide monitoring network.

Monitoring AC power usage seems like a trivial matter to be instrumenting, but WattIQ says you can learn a surprisingly useful amount of stuff just by logging each device’s consumption. For example, most laboratory equipment is (a) very expensive and (b) mostly idle. Unlike cloud servers, pharmaceutical research equipment isn’t used all the time. The machines tend to sit idle for hours or days until they’re needed urgently. Lab work often involves transferring organic samples from one machine to another in a kind of biological pipeline. Each machine gets used, but not much. Their duty cycles tell you a lot about which lab instruments are over- or under-utilized. And that, in turn, can give you a good idea of what equipment you’ll need to budget for next month or next year. 

Conversely, underused equipment can be leased out to other researchers or physically transferred to another lab within the same facility. Usage patterns can also tell you which machines could benefit from the manufacturer’s maintenance program or warranty protection, or when usage is so low that maintenance isn’t needed.

Finally, fine-grained power monitoring can alert you to impending failures. A laboratory refrigerator or freezer runs all the time, so it’s easy to develop an AI model of its normal behavior. Any deviation from the norm might signal a potential hardware failure and a need to transfer sensitive samples to another cooler before calling the repair technician. Companies like Cartesiam and PsiKick have developed similar AI-based diagnostic technologies for industrial uses. 

So… why haven’t the makers of the big shiny laboratory equipment developed something like this already? Surely a $100,000 centrifuge can handle a little microcontroller and a Wi-Fi interface. They could… but they haven’t. Lab equipment is expensive, so it needs to be amortized over long periods and consequently doesn’t get replaced very often. And nobody’s going to swap out a six-figure piece of capital equipment just to add monitoring capability. That’d be like trading in a Rolls-Royce just to get the updated radio. 

Big lab facilities might have upwards of 5,000 pieces of equipment from 300 or more different competing manufacturers, says WattIQ. Those companies have little incentive to play nicely with each other, so there’s no industry standard monitoring protocol. At best, some equipment makers might develop their own proprietary methods, but nothing that coordinates across all machines from all makers. WattIQ backfills that hole. 

InteliSocket uses ZigBee for its mesh network, which allows each smart socket to forward data packets to its peers, and eventually to the central hub, which consolidates everything and uploads via Ethernet or cellular to a monitoring dashboard. Going forward, the company will likely switch to BLE 5.0, perhaps with ZigBee for backward compatibility. 

WattIQ’s aftermarket power monitoring is like an elaborate side-channel attack, teasing data out of roomfuls of expensive equipment through the most mundane means imaginable. It seems like it wouldn’t work, but it does. And, unlike hacker attacks, it provides helpful and useful data that benefits everyone. You can learn a lot just by observing.

Leave a Reply

featured blogs
Dec 4, 2023
The OrCAD X and Allegro X 23.1 release comes with a brand-new content delivery application called Cadence Doc Assistant, shortened to Doc Assistant, the next-gen app for content searching, navigation, and presentation. Doc Assistant, with its simplified content classification...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured paper

3D-IC Design Challenges and Requirements

Sponsored by Cadence Design Systems

While there is great interest in 3D-IC technology, it is still in its early phases. Standard definitions are lacking, the supply chain ecosystem is in flux, and design, analysis, verification, and test challenges need to be resolved. Read this paper to learn about design challenges, ecosystem requirements, and needed solutions. While various types of multi-die packages have been available for many years, this paper focuses on 3D integration and packaging of multiple stacked dies.

Click to read more

featured chalk talk

Introduction to Bare Metal AVR Programming
Sponsored by Mouser Electronics and Microchip
Bare metal AVR programming is a great way to write code that is compact, efficient, and easy to maintain. In this episode of Chalk Talk, Ross Satchell from Microchip and I dig into the details of bare metal AVR programming. They take a closer look at the steps involved in this kind of programming, how bare metal compares with other embedded programming options and how you can get started using bare metal AVR programming in your next design.
Jan 25, 2023
37,328 views