feature article
Subscribe Now

Instrumenting the Internet of Really Big Things

Everactive Does Low-Power Sensors Bundled with Service and Support

“I like to rattle cages.” – Viv Albertine

Noise, vibration, and harshness. In the automotive world, NVH is a bad thing. There are specialist NVH engineers at most carmakers laboring away to exorcise mechanical gremlins.

But not all NVH is bad. In the industrial world, we can steer those gremlins toward good. We can even – if we’re clever enough – make them do work for us.

That’s the premise behind a new hardware/software company called Everactive, formerly named PsiKick (say it out loud), that makes industrial sensors that power themselves. Everactive’s sensors run on kinetic energy, generated by the very machines they’re monitoring. With enough of these sensors, strategically placed, you can monitor the health of large turbines, steam generators, and other bits of ironmongery. If a bearing starts to go bad, Everactive’s sensors will notice it long before the maintenance staff would, preventing expensive repairs or unnecessary preventive upkeep.

But why do low-power sensors matter in an industrial setting? What’s a few milliwatts here or there when your equipment is generating (or consuming) megawatts? All the sensors in an entire factory probably consume less power than the Coke machine in the break room. Surely Everactive has misjudged its market?

Ah, but there’s method to this madness. Any sensor that requires power, ipso facto, requires maintenance. The batteries need to be replaced, and that requires a union electrician to get his fingers in the machine. Multiply that by the hundreds of similar sensors in a typical installation, and it adds up to real work. Tedious work, but work nonetheless. And, presumably, all those batteries will be replaced earlier than necessary to avoid the risk of them dying on the job and the sensor going offline. Time and money, money and time.

A self-powered sensor can also collect data continuously, in contrast to battery-powered ones that duty-cycle to conserve energy. That throws away precious data, says Everactive; data that could be used to better monitor and characterize the equipment.

Power is binary; a sensor either needs external power or it doesn’t, and Everactive believes that producing an (effectively) zero-power industrial sensor makes all the difference. No power requirement, no maintenance issues. It’s a worry-free IoT.

The company doesn’t have an extensive background in industrial sensors, but it does have a history in low-power electronics. One of Everactive’s founders, Ben Calhoun, literally wrote the book on subthreshold electronics. They’ve parlayed that talent into self-propelled sensors along with low-power wireless transmission. After all, that sensor data has to go somewhere, right?

Rightly observing that Wi-Fi, Bluetooth, and other standard protocols consume a lot of energy, the developers at Everactive came up with their own wireless network technology. It’s not compatible with anything else, but it doesn’t have to be. Surprisingly, it’s not a mesh network, but a more conventional star topology. The range is modest – about 100 feet – but that’s enough to reach a gateway (or one of several) that ultimately uploads all the sensor data to Everactive’s private cloud. That’s where Everactive’s real innovation comes in.

The company doesn’t just sell sensors to industrial clients, or even to third-party integrators. Instead, the company sells its analysis expertise. It’s a service company, not a hardware company. Everactive provides experienced, human-in-the-loop failure analysis on a subscription basis. The hardware and software are invisible tools in Everactive’s bag of tricks.

The business model is more than just clever marketing – isn’t everything a service now? – it’s also an acknowledgement that its target market isn’t terribly savvy about low-power digital sensor circuits. Selling your average steamfitter on the benefits of subthreshold voltages and process geometries just isn’t going fly. So, the company presents itself as a maintenance service; their magic hardware is effectively free, rolled into the price of the service.

Everactive’s elaborate analysis software is also kept hidden behind the curtain. There are no charts, graphs, tables of numbers, or colorful user interfaces for the shop foreman to learn. That’s done at Everactive HQ by industry-specific personnel (including at least one career steamfitter). If they detect an impending maintenance problem, they’ll send a text message or page the person in charge. Otherwise, they stay quiet and out of sight. As far as the personnel on the shop floor are concerned, Everactive was never there.

It’s a paradoxical use of leading-edge subthreshold circuit design, strapping them to the side of one-ton turbines. But if it keeps the lights on and the trains running on time, Everactive will have found one of the most useful applications for cloud-enabled IoT sensors.

One thought on “Instrumenting the Internet of Really Big Things”

Leave a Reply

featured blogs
Jul 25, 2021
https://youtu.be/cwT7KL4iShY Made on "a tropical beach" Monday: Aerospace and Defense Systems Day...and DAU Tuesday: 75 Years of the Microprocessor Wednesday: CadenceLIVE Cloud Panel... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jul 24, 2021
Many modern humans have 2% Neanderthal DNA in our genomes. The combination of these DNA snippets is like having the ghost of a Neanderthal in our midst....
Jul 23, 2021
Synopsys co-CEO Aart de Geus explains how AI has become an important chip design tool as semiconductor companies continue to innovate in the SysMoore Era. The post Entering the SysMoore Era: Synopsys Co-CEO Aart de Geus on the Need for AI-Designed Chips appeared first on Fro...
Jul 9, 2021
Do you have questions about using the Linux OS with FPGAs? Intel is holding another 'Ask an Expert' session and the topic is 'Using Linux with Intel® SoC FPGAs.' Come and ask our experts about the various Linux OS options available to use with the integrated Arm Cortex proc...

featured video

Design Success with Foundation IP & Fusion Compiler

Sponsored by Synopsys

When is 1+1 greater than 2? When using DesignWare Foundation IP & Fusion Compiler! Join Raymond and Yung in their discussion of a customer that benefited from the combination of Fusion Compiler’s machine learning and Foundation IP cells and macros.

More information about DesignWare Foundation IP: Embedded Memories, Logic Libraries, GPIO & PVT Sensors

featured paper

Configure the backup voltage in a reversible buck/boost regulator

Sponsored by Maxim Integrated

This application note looks at a reference circuit design using Maxim’s MAX38888, which provides a supercapacitor-based power backup in the absence of the system rail by discharging its stored charge. The backup voltage provided by the regulator from the super cap is 12.5% less than the system rail when the system rail is removed. This note explains how to maintain the backup voltage within 5% of the minimum SYS charge voltage.

Click to read more

featured chalk talk

How Trinamic's Stepper Motor Technologies Improve Your Application

Sponsored by Mouser Electronics and Maxim Integrated

Stepper motor control has come a long way in the past few years. New techniques can give greater control, smoother operation, greater torque, and better efficiency. In this episode of Chalk Talk, Amelia Dalton chats with Lars Jaskulski about Trinamic stepper solutions and how to take advantage of micro stepping, load measurement, and more.

Click here for more information about Trinamic TMCM-6110 6-Axis Stepper Motor Driver Board