feature article
Subscribe Now

Wait, What? MIPS Becomes RISC-V

Classic CPU Company Exits Bankruptcy, Throws in the Towel

What a long, strange trip it’s been. MIPS Technologies no longer designs MIPS processors. Instead, it’s joined the RISC-V camp, abandoning its eponymous architecture for one that has strong historical and technical ties. The move apparently heralds the end of the road for MIPS as a CPU family, and a further (slight) diminution in the variety of processors available. It’s the final arc of an architecture. 

MIPS as a company has passed through a lot of hands, most recently as part of Wave Computing, the ill-fated AI startup. Wave was developing its unique AI acceleration hardware on top of a general-purpose MIPS CPU, and then it bought the entire MIPS organization. The move seemed both unusual and unnecessary, and something of a distraction, given that they’d already licensed the necessary IP. Over time, it started to look like the MIPS side of the business was the most stable part of the company. Wave finally collapsed into bankruptcy last year, emerging just last week under a new name: that of its acquired technology, MIPS. Say hello to the new MIPS. 

Development of the MIPS processor architecture has now stopped, and MIPS (the company) will start making chips based on RISC-V. This is a complete change of business model, not just CPU. The old MIPS was in the business of licensing IP, just like ARM or Ceva or Rambus. It didn’t make anything tangible. Companies like the old Wave Computing were its customers, and processors like ARM and RISC-V were its competitors. Now that equation is inverted. 

The company didn’t have far to go to find a new CPU. RISC-V is the brainchild of Dave Patterson and his team at UC Berkeley, and he’s co-author of the seminal textbook on CPU design along with John Hennessy at Stanford. Hennessy’s MIPS (Microprocessor without Interlocked Pipeline Stages) preceded RISC-V by about two decades, but the two are remarkably similar in underlying concept and philosophy. 

Both RISC-V and MIPS are simple, clean, streamlined CPU designs that hew closely to the RISC ethic of pushing complexity out of hardware and onto software. The original MIPS, along with SPARC, Alpha, PA-RISC and a few others, was at the forefront of the RISC Revolution of the 1980s. For a while, it gave Intel a scare. (Enough that the company spent billions developing Itanium.) MIPS processors were at the heart of DEC minicomputers, Silicon Graphics workstations, Nintendo video games, and a hundred systems in between. The company went public in 1989. Microsoft even ported Windows to MIPS. Business was so good that Silicon Graphics bought it, then spun it off as its own licensing company, and it went public again in 1998. MIPS competed directly with British upstart ARM, but it was considered the more serious and powerful alternative of the two. Cellphone makers use ARM, but real engineers choose MIPS. For a while… 

Fast forward to today, and the newly formed company’s official statement says, “MIPS is developing a new industry leading, standards-based, 8th-generation architecture, which will be based on the open-source RISC-V processor standard.” In this context, the “8th generation” refers to seven generations of the traditional MIPS architecture, followed by an upcoming RISC-V design. It sounds like the company is implying that this is a smooth transition with some level of compatibility between the old and the new. It isn’t. It’s a clean break as the company switches from the old CPU design, that it owned, to a new one that’s in the public domain. The new MIPS is MIPS in name only. 

The new MIPS is also a member of RISC-V International, the nonprofit group that coordinates official RISC-V oversight. In fact, it’s been a member for a while, which might have telegraphed their intentions. It so happens that the CTO of RISC-V International, Mark Himelstein, is a former employee of MIPS Technologies. He told me, “I would personally say that the simplicity and elegance of RISC-V most reminds me of MIPS more than any other architecture. I am excited about the company’s next steps, including their involvement with the community and to see what RISC-V products they will bring to market.” 

As far as anyone can tell, the newly formed MIPS will continue to honor existing license agreements signed before the restructuring, meaning that licensees can legally still build MIPS-based chips and must still pay royalties to MIPS. Support is murkier. It’s not clear that MIPS has either the staff or the inclination to provide substantial support to designers. And any future MIPS processor upgrades seem extremely unlikely. But with this company, anything can happen.

41 thoughts on “Wait, What? MIPS Becomes RISC-V”

Leave a Reply

featured blogs
Dec 7, 2021
Introduced back in 2011, ACE (AXI Coherency Extensions) grew from existing AXI protocol, to satisfy the cache coherency maintenance demands of SOCs with multi core processors and shared caches in... [[ Click on the title to access the full blog on the Cadence Community site....
Dec 6, 2021
The scary thing is that this reminds me of the scurrilous ways in which I've been treated by members of the programming and IT communities over the years....
Dec 3, 2021
Explore automotive cybersecurity standards, news, and best practices through blog posts from our experts on connected vehicles, automotive SoCs, and more. The post How Do You Stay Ahead of Hackers and Build State-of-the-Art Automotive Cybersecurity? appeared first on From Si...
Nov 8, 2021
Intel® FPGA Technology Day (IFTD) is a free four-day event that will be hosted virtually across the globe in North America, China, Japan, EMEA, and Asia Pacific from December 6-9, 2021. The theme of IFTD 2021 is 'Accelerating a Smart and Connected World.' This virtual event ...

featured video

Design Low-Energy Audio/Voice Capability for Hearables, Wearables & Always-On Devices

Sponsored by Cadence Design Systems

Designing an always-on system that needs to conserve battery life? Need to also include hands-free voice control for your users? Watch this video to learn how you can reduce the energy consumption of devices with small batteries and provide a solution for a greener world with the Cadence® Tensilica® HiFi 1 DSP family.

More information about Cadence® Tensilica® HiFi 1 DSP family

featured paper

Utilizing the Benefits of Coupled Inductors

Sponsored by Analog Devices

In a multiphase design, coupled inductors offer many advantages compared to discrete inductors including current ripple cancellation, improved transient performance, higher inductor current saturation, smaller inductor size, output capacitance and improved overall efficiency performance. This application note highlights how the benefit of current ripple cancellation can be traded for either smaller size or higher efficiency, depending on design specifications.

Click to read more

featured chalk talk

Power over Ethernet - Yesterday, Today, and Tomorrow

Sponsored by Mouser Electronics and Microchip

Power over Ethernet has come a long way since its initial creation way back in 1997. In this episode of Chalk Talk, Amelia Dalton chats with Alan Jay Zwiren from Microchip about the past, present, and future of power over ethernet including details of how a PoE system works, why midspans are crucial for power over ethernet connectivity and why Microchip can be your one stop shop for your next PoE design needs.

Click here for more information about Microchip Technology multi-Power over Ethernet (mPoE)