feature article
Subscribe Now

The Transistor at 75: The First Makers, Part 1

Last November, our industry celebrated the 75th anniversary of the announcement by Bell Telephone Labs (BTL) of the transistor’s birth. I knew that many facets of the transistor’s invention would be well covered so I didn’t plan to add an article to this pile because I didn’t feel I had much to improve upon what would be written. However, I did read several of these articles including the excellent article titled “The Surface State Job,” written by my friend David Laws – writer, photographer, and Semiconductor Curator at the Computer History Museum. What I read made me ask one simple question. At least, I thought it was a question with a simple answer.

BTL held its first transistor symposium over five days in September 1951. According to the Bell Telephone Record, an internal Bell publication, 300 people attended this first transistor symposium, which included representatives from Bell, the US military, and US military contractors. The material presented in this first symposium covered basic transistor physics and theory and a discussion of the characteristics of point-contact transistors (in production) and grown-junction transistors (experimental but coming soon). This event was restricted to US citizens and to people specifically cleared by the military services.

In April 1952, BTL held a second transistor symposium where it explained how to make transistors to the original licensees of the BTL transistor patents. This event, perhaps more than any other, marks the original start of the commercial semiconductor industry. The usual history credits the invention of the transistor at BTL, followed by the founding of Shockley Transistor Labs, the exit of eight key employees from Shockley to found Fairchild Semiconductor, and then the Fairchildren – companies that sprang from the nourishing inventiveness at Fairchild. However, I realized that this well-trod history is really the second phase of the semiconductor revolution. The relatively unknown first phase was triggered by BTL’s 1952 Transistor Symposium.

My simple question was this: Which companies attended BTL’s second transistor symposium?

You might think that the companies attending such an important event in electronics history would be well documented. They aren’t. Answering this question has taken considerable research resulting in a six-article series, and I’m only 95% confident that I have the right list.

As a first attempt to answer this question, I asked David Laws if he had the list of attending companies. Laws is an accomplished historian when it comes to the history of the electronics industry. The last time Laws triggered one of my questions, I spent quite a while figuring out which devices Gordon Moore used to create the famous exponential growth curve in his 1965 article in Electronics titled “Cramming more components onto integrated circuits.” The data on this curve originally defined Moore’s Law. I started with a drawing containing some cryptic notes about the semiconductor die shown in a photo that Laws had described in an article. (See “Moore’s Law and the Seven Devices.”)

David Laws quickly replied to my latest query:

“I don’t have any useful data regarding Bell transistor licensees. Most knowledgeable in this area is Michael Riordan, co-author of Crystal Fire.”

Riordan is a physicist and a giant when it comes to the history of physics and technology. Besides Crystal Fire: The Invention of the Transistor and the Birth of the Information Age, he’s written or co-written Tunnel Visions: The Rise and Fall of the Superconducting Super Collider, The Rise of the Standard Model: Particle Physics in the 1960s and 1970s, The Shadows of Creation: Dark Matter and the Structure of the Universe, and The Hunting of the Quark: A True Story of Modern Physics.

Laws copied Riordan on his email reply to me, and Riordan replied in short order:

“I’ve sent essentially all of my files and records on the transistor/Crystal Fire to the AIP Niels Bohr Library for safe and long-lasting keeping, so I cannot be of much help here.”

So now, I was on my own. I turned to my trusty research assistant, Google, for help. I asked Google for a list of the attending companies at the second BTL transistor symposium in 1952 and got all sorts of answers – except they weren’t the answers I wanted. Most specifically, I found references that stated that 20, 24, 25, 26, 30, 34, 35, or 40 companies attended that second symposium. Clearly, there was not much consensus on the attendee list.

Finally, I decided that the book published by BTL itself, A History of Engineering and Science in the Bell System: Electronics Technology (1925-1975), was likely to have the definitive number. That book states:

“Twenty-six domestic and fourteen foreign licensees, many of these newly signed, attended the symposium, which convened at Murray Hill for six days and at the Western Electric-Bell Laboratories location in Allentown for two final days, where the point-contact transistor had been introduced into Western Electric manufacture in October 1951.”

So, my number was forty companies – 26 companies in the US and 14 companies elsewhere. Now all I had to do was figure out which companies. I found a “Rump Session” presentation by R.M. Wallace from the 50th IEEE Semiconductor Interface Specialists Conference in 2019 that contained a list of companies that attended the 1952 transistor symposium. Wallace had extracted the list from Bo Lojek’s definitive book, History of Semiconductor Engineering. I confirmed that list using queries to Google Books, which has absorbed a copy of Lojek’s book. However, Lojek listed only 34 companies in attendance at the 1952 Transistor Symposium:

  1.       Arnold Engineering
  2.       Automatic Electric
  3.       Automatic Telephone and Electric Company
  4.       The Baldwin Company
  5.       Bowser
  6.       British Thompson-Houston Company
  7.       Bulova Watch Company
  8.       Crane Company
  9.       England Electric Company
  10.   Felten & Guilleaume Carlswerk
  11.   General Electric Company (US)
  12.   Globe-Union
  13.   Hanovia Chemical and Manufacturing Company
  14.   Hughes Tool Company (Hughes Aircraft)
  15.   IBM Corp
  16.   IT&T Corp
  17.   Lenkurt Electric Company
  18.   LM Ericsson
  19.   T.R. Mallory
  20.   Microwaves Associates
  21.   Minneapolis Honeywell
  22.   National Cash Register Company
  23.   National Fabricated Fabrics
  24.   NV Philips
  25.   Pye
  26.   Radio Development and Research Corp
  27.   Radio Reception Company
  28.   Raytheon Manufacturing
  29.   Siemens and Halske
  30.   Sprague Electric Company
  31.   Telefunken Gesellschaft
  32.   Texas Instruments
  33.   Transistor Products
  34.   Tung-Sol Electric

A few of the companies on this list are familiar semiconductor vendors that continue to manufacture devices including transistors, diodes, and ICs. Other names on this list are companies that exited the semiconductor business, sold off their semiconductor operations, merged with other companies, or went out of business entirely.

In part 2 of this article series, I’ll be discussing the names on this list that clearly are not and never were semiconductor manufacturers. Parts 3 and 4 of this article series will then discuss the early transistor makers in the US and some of the early transistors they produced. Part 5 will then discuss the early transistor makers in Europe. Part 6 discusses early transistor makers in Japan, none of which appear on this list. By then, we should have fairly well exhausted the subject.

References

A History of Engineering and Science in the Bell System: Electronics Technology (1925-1975)

History of Semiconductor Engineering, Bo Lojek

Leave a Reply

featured blogs
Mar 28, 2023
In this user case, Marintek uses Fidelity Fine/Marine and Hexpress for resistance curve prediction of a planning hull and its validation against the model test cases. Team Involved End User: Eloïse Croonenborghs, Research Scientist at MARINTEK, Maritime division, Trondhe...
Mar 23, 2023
Explore AI chip architecture and learn how AI's requirements and applications shape AI optimized hardware design across processors, memory chips, and more. The post Why AI Requires a New Chip Architecture appeared first on New Horizons for Chip Design....
Mar 10, 2023
A proven guide to enable project managers to successfully take over ongoing projects and get the work done!...

featured video

First CXL 2.0 IP Interoperability Demo with Compliance Tests

Sponsored by Synopsys

In this video, Sr. R&D Engineer Rehan Iqbal, will guide you through Synopsys CXL IP passing compliance tests and demonstrating our seamless interoperability with Teladyne LeCroy Z516 Exerciser. This first-of-its-kind interoperability demo is a testament to Synopsys' commitment to delivering reliable IP solutions.

Learn more about Synopsys CXL here

featured chalk talk

Current Sense Resistor - WFC & WFCP Series
Sponsored by Mouser Electronics and Vishay
If you are working on a telecom, consumer or industrial design, current sense resistors can give you a great way to detect and convert current to voltage. In this episode of Chalk Talk, Amelia Dalton chats with Clinton Stiffler from Vishay about the what, where and how of Vishay’s WFC and WFCP current sense resistors. They investigate how these current sense resistors are constructed, how the flip-chip design of these current sense resistors reduces TCR compared to other chip resistors, and how you can get started using a Vishay current sense resistor in your next design.
May 11, 2022
38,823 views