feature article
Subscribe Now

Startup Polishes Wi-Fi HaLow

Palma Ceia Pivots from IP to Fabless Chip Business

There’s nothing quite like getting in on the ground floor. The whole market is yours. You’ve got “first mover advantage.” You get to set the pace that others must follow. 

Or there’s the old adage that you can recognize the pioneers by the arrows in their backs. Either way you look at it, entering a new market is equal parts exciting, terrifying, lucrative, and risky. Even more so when your company is changing as fast as the market. 

Things were going along just fine at Palma Ceia, a little startup developing IP for wireless applications. The design group spun out of Magma Design Automation after that company was acquired by Synopsys in 2012. The IP-licensing business was fine… but not as good as it could be. You see, designing wireless, analog, and RF circuitry for others is time-consuming and repetitive. In business terms, it doesn’t scale. “Designing RF and analog is dramatically harder than digital,” says Palma Ceia CEO Roy Jewell. “Our customer’s job is even harder than ours,” he adds, because they’ve got the whole physical layer to deal with, too. There must be a better way. 

Come 2018, the company made the pivot to fabless chip company. Now, in addition to developing their own hardware and software IP, they also see the project through to finished silicon. Now, the RF integration problems are under one roof. No need to customize the design for each customer, process node, or EDA toolchain. Just make it work and sell the finished product to customers ready to plug and play. 

The company’s first physical chip is (or will be) the PCS1100, a Wi-Fi 6E 4×4:4 transceiver for the new high-speed Wi-Fi standard. It will be taping out soon, with samples expected late this year. 

The bigger project involves a different network, though. The company’s upcoming PCS2100 and PCS2500 chips are designed for Wi-Fi HaLow, the low-speed but long-distance version of Wi-Fi intended for difficult IoT applications. It’ll be the company’s first foray into Wi-Fi HaLow, and, if successful, one of the first HaLow chip sets on the market. 

Wi-Fi HaLow is the friendly brand name assigned to technical standard IEEE 802.11ah, and it sits at the bottom of the many-layered Wi-Fi standards hierarchy. As we’ve described earlier, HaLow operates in the 900 MHz range, not the 2.4GHz, 5GHz, or even 6GHz bands that we see with other Wi-Fi standards. That means it’s incompatible with familiar office or home networks. You won’t be adding HaLow nodes to your home router, or vice versa. In a sense, it’s Wi-Fi in name only. 

Wi-Fi HaLow also takes a different approach to how nodes communicate over the airwaves. Instead of allowing every node to broadcast at random and then sorting out the inevitable collisions, Wi-Fi HaLow can assign each node its own timeslot. Stay quiet until it’s your turn and you won’t have to shout over all the others. That, plus the lower RF frequency, negotiated sleep/wake cycles, and other features allow HaLow to achieve longer distances (up to a kilometer) while also saving power. And, HaLow access points can theoretically juggle more than 8000 nodes. 

Although the radio side of the interface is different from any other Wi-Fi variation, the underlying TCP/IP and UDP protocols are the same. From a software perspective, Wi-Fi HaLow looks just like any other Wi-Fi – or Ethernet, for that matter. It’s all 802.something under the hood. That makes routing and bridging fairly straightforward.  

Like the PCS1100 device, the PCS2100 and 2500 pair are about to tape out, with samples expected in Q4 of this year. The PCS2500 is designed for access points; the 2100 is for “stations,” the HaLow nomenclature for client nodes. Both devices will roll out of TSMC foundries. 

Palma Ceia’s engineers have the devices working now in FPGA form, and they know their RF from a hole in the ground. This is what they’ve been building up to for almost a decade. Still, the transition from IP developer to chip supplier will be a big one. Packaging and testing still lie ahead, plus a dozen other minor hurdles. Welcome to the physical world of wireless networks.

Leave a Reply

featured blogs
Nov 27, 2023
Most design teams use the schematic-driven connectivity-aware environment of Virtuoso Layout XL. However, due to the reuse of legacy designs, third-party tools, and the flexibility of the Virtuoso platform, a design can lose binding and connectivity. Despite the layout being ...
Nov 27, 2023
Qualcomm Technologies' SVP, Durga Malladi, talks about the current benefits, challenges, use cases and regulations surrounding artificial intelligence and how AI will evolve in the near future....
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured webinar

Rapid Learning: Purpose-Built MCU Software Tools for Data-Driven Embedded IoT Systems

Sponsored by ITTIA

Are you developing an MCU application that captures data of all kinds (metrics, events, logs, traces, etc.)? Are you ready to reduce the difficulties and complications involved in developing an event- and data-centric embedded system? This webinar will quickly introduce you to excellent MCU-specific software options for developing your next-generation data-driven IoT systems. You will also learn how to recognize and overcome data management obstacles. Register today as seats are limited!

Register Now!

featured chalk talk

ADI's ISOverse
In order to move forward with innovations on the intelligent edge, we need to take a close look at isolation and how it can help foster the adoption of high voltage charging solutions and reliable and robust high speed communication. In this episode of Chalk Talk, Amelia Dalton is joined by Allison Lemus, Maurizio Granato, and Karthi Gopalan from Analog Devices and they examine benefits that isolation brings to intelligent edge applications including smart building control, the enablement of Industry 4.0, and more. They also examine how Analog Devices iCoupler® digital isolation technology can encourage innovation big and small!  
Mar 14, 2023
30,690 views