feature article
Subscribe Now

Loose Lips Sink MIPS

Microprocessor Licensing Moves to China

“What a long, strange trip it’s been.” – Grateful Dead

If you think designing a microprocessor is complicated, try following its ownership saga. The tangled trail of licensing rights, ownership, royalties, and politics surrounding the MIPS microprocessor family took another weird turn last week, with the result that MIPS is now in Chinese hands. Sort of. 

As the Reuters news agency reports, a Shanghai-based company called CIP United Co. Ltd. just bought the full legal rights to license the MIPS processor architecture “for all new and existing customers in China, Hong Kong and Macau, as well as the ability to develop new derivative technologies based on the MIPS architecture.” CIP may not own the entirety of MIPS, the company, but it does now manage a big chunk of East Asia. Just as important, CIP can develop its own MIPS processors, according to Reuters’ sources. “A license for all of mainland China has already been sold, lock, stock and barrel.”

This is precisely what the U.S. government was trying to avoid when it intervened in the previous acquisition of MIPS Technologies. However, it appears those efforts were foiled through a series of complex transactions with offshore holding companies before finally landing in China. 

Checking in on the official MIPS website still shows it as a Santa Clara, California company. That’s the same location it has occupied for years. In that sense, it’s barely moved, though the situation is much altered. Oddly, the site says nothing about the new licensing deal. In fact, the site’s news link was broken as of this writing. 

MIPS’s most recent owner was/is Wave Computing, a now-bankrupt AI startup also based in Santa Clara. Wave seemed like an unlikely acquirer at the time, more of a licensee than an owner. Before Wave there was Entropy Research Labs, a short-lived holding company that was preceded in ownership by the equally mysterious Tallwood Venture Capital. Not coincidentally, all three firms were owned and/or founded by the same person, one Diosdado “Dado” Banatao, a successful Philippines-born engineer whom old-timers may remember as the co-founder of both Chips & Technologies and S3 Graphics in the 1980s. 

Four years before all of that, MIPS was part of UK-based IP powerhouse Imagination Technologies, which had paid $100 million to acquire MIPS from, well, MIPS, back when it was a standalone company. But when Imagination’s stock tanked following Apple’s public announcement that it would no longer use Imagination’s PowerVR graphics, the entire company was acquired by Canyon Bridge. Well, almost the entire company. Because Canyon Bridge is largely Chinese-owned, Imagination was forced to split off MIPS and sell it separately, which is how it wound up at Tallwood. 

Before Imagination’s ownership, MIPS Technologies was its own company, having been spun out of Silicon Graphics (SGI), which had, in turn, absorbed MIPS Computer Systems in 1992. Confused yet? There’s a nice graphic chronicling MIPS ownership through the years here. Subject to change without notice. 

Presumably, customers outside of CIP’s territory in China, Hong Kong, and Macau can still license MIPS processor designs from Wave Computing in California. But even that isn’t straightforward. Wave’s licensing activity is handled by a holding company registered in the Cayman Islands called MIPS Technologies International Ltd. It’s hard to know where to send the royalty checks anymore. 

It’s also not clear whether Wave can still legally develop new MIPS processors, or if that’s the sole purview of CIP. The question may be moot. Wave filed for Chapter 11 bankruptcy protection in April and the company has little engineering talent left to spare beyond keeping the lights on. Just 18 months ago, Wave was worth $600 million and employed 250 people. Now it has about two dozen and is essentially valueless. Selling off its biggest asset – MIPS – was its last hope for solvency. 

It’s been a long, strange trip for MIPS. What started out as a university research project (under Dr. David Patterson John L. Hennessy, no less), then a supercomputer company, then a licensed CPU core, then an embedded processor, is now an historical footnote. For a while, MIPS was as fast and innovative and exciting as anything. It was going to beat Intel at its own game. Then it was going to challenge ARM. It powered Sony and Nintendo video games. It rendered Jurassic Park movies. It had everything going for it, and yet somehow lost at every turn, the unlucky counterexample of Silicon Valley success. Its convoluted journey now continues on the opposite side of the world. 

featured blogs
Nov 25, 2020
It constantly amazes me how there are always multiple ways of doing things. The problem is that sometimes it'€™s hard to decide which option is best....
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...
Nov 25, 2020
It might seem simple, but database units and accuracy directly relate to the artwork generated, and it is possible to misunderstand the artwork format as it relates to the board setup. Thirty years... [[ Click on the title to access the full blog on the Cadence Community sit...
Nov 23, 2020
Readers of the Samtec blog know we are always talking about next-gen speed. Current channels rates are running at 56 Gbps PAM4. However, system designers are starting to look at 112 Gbps PAM4 data rates. Intuition would say that bleeding edge data rates like 112 Gbps PAM4 onl...

featured video

Product Update: Broad Portfolio of DesignWare IP for Mobile SoCs

Sponsored by Synopsys

Get the latest update on DesignWare IP® for mobile SoCs, including MIPI C-PHY/D-PHY, USB 3.1, and UFS, which provide the necessary throughput, bandwidth, and efficiency for today’s advanced mobile SoCs.

Click here for more information about DesignWare IP for 5G Mobile

featured paper

Learn how designing small is easier than you think

Sponsored by Texas Instruments

Designing with small-package ICs is easier than you think. Find out how our collection of industry's smallest signal-chain products can help you optimize board space without sacrificing features, cost, simplicity, or reliability in your system.

Click here to download the whitepaper

Featured Chalk Talk

Nano Pulse Control Clears Issues in the Automotive and Industrial Markets

Sponsored by Mouser Electronics and ROHM Semiconductor

In EV and industrial applications, converting from high voltages on the power side to low voltages on the electronics side poses a big challenge. In order to convert big voltage drops efficiently, you need very narrow pulse widths. In this episode of Chalk Talk, Amelia Dalton chats with Satya Dixit from ROHM about new Nano Pulse Control technology that changes the game in DC to DC conversion.

More information about ROHM Semiconductor BD9V10xMUF Buck Converters