feature article
Subscribe Now

Find Your Security in the Cloud

Sequitur Labs Adds “Trust as a Service”

Sometimes the biggest engineering challenge is overcoming NIH. The dreaded “not invented here” syndrome has derailed many a project, cost untold millions, wasted months, and produced inferior products. NIH is like our own children: it’s hard not to fall in love and overlook the flaws. 

Sometimes what we need is a whack on the head and someone to tell us, “This is not your core competence! Give it up and let an expert do it!” It’s tough love in the engineering lab. 

Nowhere is this more evident than in the category of security. Ten years ago, most of us didn’t care about designing-in security measures. Now it’s a requirement. Yet very few hardware or software developers have any real expertise with security, nor do most of us have any interest in it, either. It’s a necessary evil, not an opportunity to innovate. It’s also a good way to look bad in front of your boss and your peers. If your homegrown security measures somehow work, nobody cares because success was expected. But if your product ever gets hacked, you’re the goat. It’s a lose-lose situation. 

That’s why outsourced security companies exist. Companies like Sequitur Labs, which has long offered its EmSpark package of security measures for embedded and IoT devices. The twelve-person company toils away on security measures because they know nobody else wants to. Now, they’ve augmented their security software with cloud-based services. 

The new EmPower service offers a package of features to remotely manage devices in the field. EmPower handles over-the-air firmware updates, protects sensitive intellectual property, manages keys and certificates, detects threats, and collects interesting data from your devices to monitor their health and welfare. It doesn’t even need the EmSpark software layer to work, though that helps. 

Like EmSpark, EmPower runs on relatively low-end microprocessors from ARM’s Cortex-A range, including chips from NXP, STMicro, Microchip, and (surprisingly) nVidia. Nearly any CPU with ARM’s TrustZone is a potential target. But, unlike EmSpark, EmPower can also run on low-end MCUs that don’t have TrustZone. You won’t get all the same features that the two-product combination can deliver, but it’s better than nothing. 

Sequitur Lab’s VP of Marketing, Larry O’Connell, makes the point that security is (a) necessary, and (b) harder than it looks. It’s tough enough for most programmers to develop, test, and deliver working code that does what it’s supposed to under normal circumstances. Operating smoothly in the face of malicious hacking is exponentially tougher, largely because we don’t even know what we’re fighting against. Do we worry about RF-based side-channel attacks? Code injection? Hidden exploits in the operating system, code libraries, drivers, or hardware? Are production methods really secure, and are firmware updates reliable? The list goes on and on, and most of us are ill equipped to recognize, much less fix, such an array of vulnerabilities. 

Moreover, every processor is different, so nailing down one product design may not help much with the next one. And the threats change over time, too. There’s a reason PC antivirus programs are subscriptions, not one-time purchases. With EmSpark, he says, programmers deal only with its software interface, not with the underlying hardware, so experience transfers from one project to the next. 

Layering EmPower’s cloud services on top of EmSpark adds “entire life cycle management, from initial boot up until the product is removed from service,” says O’Connell. 

If security concerns are going to be with us — and it looks like they will — it makes sense to either develop some in-house expertise or outsource it to someone who already has. Given that most embedded and IoT product developers already have their hands full developing their products, the latter course makes a lot of sense.

One thought on “Find Your Security in the Cloud”

  1. engineers drawn out of their realm of the entirely-predictable to play in the wild world of what is done with the bits do so to their disadvantage

Leave a Reply

featured blogs
Nov 23, 2022
The current challenge in custom/mixed-signal design is to have a fast and silicon-accurate methodology. In this blog series, we are exploring the Custom IC Design Flow and Methodology stages. This methodology directly addresses the primary challenge of predictability in creat...
Nov 22, 2022
Learn how analog and mixed-signal (AMS) verification technology, which we developed as part of DARPA's POSH and ERI programs, emulates analog designs. The post What's Driving the World's First Analog and Mixed-Signal Emulation Technology? appeared first on From Silicon To So...
Nov 21, 2022
By Hossam Sarhan With the growing complexity of system-on-chip designs and technology scaling, multiple power domains are needed to optimize… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

How to Harness the Massive Amounts of Design Data Generated with Every Project

Sponsored by Cadence Design Systems

Long gone are the days where engineers imported text-based reports into spreadsheets and sorted the columns to extract useful information. Introducing the Cadence Joint Enterprise Data and AI (JedAI) platform created from the ground up for EDA data such as waveforms, workflows, RTL netlists, and more. Using Cadence JedAI, engineering teams can visualize the data and trends and implement practical design strategies across the entire SoC design for improved productivity and quality of results.

Learn More

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Chipageddon: What's Happening, Why It's Happening and When Will It End

Sponsored by Mouser Electronics and Digi

Semiconductors are an integral part of our design lives, but supply chain issues continue to upset our design processes. In this episode of Chalk Talk, Ronald Singh from Digi and Amelia Dalton investigate the variety of reasons behind today’s semiconductor supply chain woes. They also take a closer look at how a system-on-module approach could help alleviate some of these issues and how you can navigate these challenges for your next design.

Click here for more information about DIGI ConnectCore 8M Mini