feature article
Subscribe Now

Estimating Power Before You Start

Wisebatt Tool Predicts Power Consumption Before Hardware is Ready

“Power corrupts. PowerPoint corrupts absolutely.” – Edward Tufte

Want to know how much energy your new battery device will consume? The answer may be in Paris. 

Wisebatt is an 11-person startup based in the French capital city, and they’ve produced a tool that estimates battery life and power consumption with remarkable accuracy. Remarkable, because you don’t have to give it very much information to go on. It works before you’ve created a single schematic or written a single line of code. Just draw a sketch (sort of) and it does the rest, predicting your system’s power consumption, give or take about 10%.  

There’s something to be said for quick and dirty, and Wisebatt’s estimation tool is intended to give engineers and project teams a rough-and-ready way to try out different hardware and software options. Does replacing the Cypress PSoC with a Microchip PIC save us any power? Will changing the sleep mode of the interface chips hurt anything? Will the coin cell battery we want last for a week… or just a few hours? Wisebatt knows all. 

The tool itself is web-based and looks like schematic-capture software. It has a library of over 7000 components from almost 100 different hardware vendors, and the roster includes MCUs, sensors, radio subsystems, serial interfaces, timers, analog components, passives, interface chips, and more. It also knows a lot about batteries. 

You simply drag and drop components from the library and draw single lines to connect them. For example, a 16-bit bus between an MCU and a memory is a single line; so is an SPI interface, an I2C connection, or anything else. Wisebatt doesn’t need to know the detailed layout of your entire system, only which components are talking to which other components. 

Software is even more abstract. The tool allows you to describe “behavior” using a meta-language, such as “wait for 500 milliseconds” or “read from device” or “transmit via RF.” From that, it knows how active the relevant components will be, and when they can safely sleep. 

If this all sounds squishy and slapdash, it’s anything but. Wisebatt’s power estimations are based on detailed datasheet specs from each component, plus the team’s years of academic research and prototyping on real hardware. What they wanted was a way to estimate power consumption, manufacturing cost, component availability, and battery life before they committed to a particular circuit design or vendor choice. This chicken-and-egg problem eventually led to a new company and a new tool. After a few hundred tryouts on real hardware, they’re pretty confident the tool does what it’s supposed to. 

Swapping out one component for another doesn’t require redrawing any schematics or rethinking how the updated interfaces will work. Wisebatt simply replaces one chip’s power behavior with the other’s and updates its energy and cost estimates accordingly. It also knows if the new component has different sleep modes, and it models them appropriately. Finally, it models the different behaviors of different batteries and battery types (an Energizer EN91 vs. a Varta CR123A, for example) and how they’ll behave over the lifetime of the system. 

Wisebatt positions its tool somewhere between Simulink and SPICE: It’s more accurate than the former but not as detailed as the latter. It’s more component-savvy than a generic mathematical tool but works on designs that haven’t reached the fine-toothed transistor modelling stage.  

As befits a startup, Wisebatt offers individuals an unlimited free license to use its tool, provided all the work is done in public (à la open-source software and GitHub). Professional users pay a $79 monthly fee in exchange for privacy, and bigger corporations can negotiate a site license with Wisebatt directly. 

It’s not a circuit simulator, a schematic tool, a compiler, or a debugger. But it is sanity checking made easy, and it’s more effective than a whiteboard at trying out different ideas. For about the price of the engineering team’s doughnuts, Wisebatt might help you plan your next design. 

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Achieve Greater Design Flexibility and Reduce Costs with Chiplets

Sponsored by Keysight

Chiplets are a new way to build a system-on-chips (SoCs) to improve yields and reduce costs. It partitions the chip into discrete elements and connects them with a standardized interface, enabling designers to meet performance, efficiency, power, size, and cost challenges in the 5 / 6G, artificial intelligence (AI), and virtual reality (VR) era. This white paper will discuss the shift to chiplet adoption and Keysight EDA's implementation of the communication standard (UCIe) into the Keysight Advanced Design System (ADS).

Dive into the technical details – download now.

featured chalk talk

ROHM's 4th Generation SiC MOSFET
In this episode of Chalk Talk, Amelia Dalton and Ming Su from ROHM Semiconductor explore the benefits of the ROHM’s 4th generation of silicon carbide MOSFET. They investigate the switching performance, capacitance improvement, and ease of use of this new silicon carbide MOSFET family.
Jun 26, 2023
36,729 views