feature article
Subscribe Now

Estimating Power Before You Start

Wisebatt Tool Predicts Power Consumption Before Hardware is Ready

“Power corrupts. PowerPoint corrupts absolutely.” – Edward Tufte

Want to know how much energy your new battery device will consume? The answer may be in Paris. 

Wisebatt is an 11-person startup based in the French capital city, and they’ve produced a tool that estimates battery life and power consumption with remarkable accuracy. Remarkable, because you don’t have to give it very much information to go on. It works before you’ve created a single schematic or written a single line of code. Just draw a sketch (sort of) and it does the rest, predicting your system’s power consumption, give or take about 10%.  

There’s something to be said for quick and dirty, and Wisebatt’s estimation tool is intended to give engineers and project teams a rough-and-ready way to try out different hardware and software options. Does replacing the Cypress PSoC with a Microchip PIC save us any power? Will changing the sleep mode of the interface chips hurt anything? Will the coin cell battery we want last for a week… or just a few hours? Wisebatt knows all. 

The tool itself is web-based and looks like schematic-capture software. It has a library of over 7000 components from almost 100 different hardware vendors, and the roster includes MCUs, sensors, radio subsystems, serial interfaces, timers, analog components, passives, interface chips, and more. It also knows a lot about batteries. 

You simply drag and drop components from the library and draw single lines to connect them. For example, a 16-bit bus between an MCU and a memory is a single line; so is an SPI interface, an I2C connection, or anything else. Wisebatt doesn’t need to know the detailed layout of your entire system, only which components are talking to which other components. 

Software is even more abstract. The tool allows you to describe “behavior” using a meta-language, such as “wait for 500 milliseconds” or “read from device” or “transmit via RF.” From that, it knows how active the relevant components will be, and when they can safely sleep. 

If this all sounds squishy and slapdash, it’s anything but. Wisebatt’s power estimations are based on detailed datasheet specs from each component, plus the team’s years of academic research and prototyping on real hardware. What they wanted was a way to estimate power consumption, manufacturing cost, component availability, and battery life before they committed to a particular circuit design or vendor choice. This chicken-and-egg problem eventually led to a new company and a new tool. After a few hundred tryouts on real hardware, they’re pretty confident the tool does what it’s supposed to. 

Swapping out one component for another doesn’t require redrawing any schematics or rethinking how the updated interfaces will work. Wisebatt simply replaces one chip’s power behavior with the other’s and updates its energy and cost estimates accordingly. It also knows if the new component has different sleep modes, and it models them appropriately. Finally, it models the different behaviors of different batteries and battery types (an Energizer EN91 vs. a Varta CR123A, for example) and how they’ll behave over the lifetime of the system. 

Wisebatt positions its tool somewhere between Simulink and SPICE: It’s more accurate than the former but not as detailed as the latter. It’s more component-savvy than a generic mathematical tool but works on designs that haven’t reached the fine-toothed transistor modelling stage.  

As befits a startup, Wisebatt offers individuals an unlimited free license to use its tool, provided all the work is done in public (à la open-source software and GitHub). Professional users pay a $79 monthly fee in exchange for privacy, and bigger corporations can negotiate a site license with Wisebatt directly. 

It’s not a circuit simulator, a schematic tool, a compiler, or a debugger. But it is sanity checking made easy, and it’s more effective than a whiteboard at trying out different ideas. For about the price of the engineering team’s doughnuts, Wisebatt might help you plan your next design. 

Leave a Reply

featured blogs
Jul 5, 2022
The 30th edition of SMM , the leading international maritime trade fair, is coming soon. The world of shipbuilders, naval architects, offshore experts and maritime suppliers will be gathering in... ...
Jul 5, 2022
By Editorial Team The post Q&A with Luca Amaru, Logic Synthesis Guru and DAC Under-40 Innovators Honoree appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Using Intel FPGA to Develop Video and Vision Solutions

Sponsored by Mouser Electronics and Intel

Today’s video applications require enormous amounts of compute performance on small power budgets. And, the wide variety of specifications, rates, and resolutions makes flexibility a key design requirement. In this episode of Chalk Talk, Amelia Dalton chats with Omi Oliyide of Intel about how Intel FPGAs are ideal to take on even the most challenging video and vision designs, and explain how you can get started with this exciting technology in your next project.

More information about Intel Arria® 10 GX FPGA Development Kit