feature article
Subscribe Now

Bluetooth 5 for $4

Renesas RA4W1 MCU Joins The BLE Crowd

“You need to be careful with a Bluetooth headset. Because some guys look crazy with them.” – Neil Strauss

It’s still early days for Bluetooth 5, but Renesas already has a couple of MCUs that support it. Newest among them is the RA4W1 microcontroller, which includes a BLE transceiver and link layer, along with the usual MCU features, all for a price below $4 in volume. 

Like other devices in the Renesas RA4 family, the new W1 is based on the ubiquitous ARM Cortex-M4, this time running at 48 MHz. That’s backed up with 512KB of flash memory and a separate 8KB area for “data flash.” The former is good for only about 1000 erase/write cycles, whereas the data flash is guaranteed for at least 100,000 cycles, making it a safer choice for nonvolatile variables. There’s also 96KB of SRAM and the usual A/D and D/A converters, serial interfaces, USB, CAN, and timers. 

Renesas supports BLE 5.0, not the newer 5.1 or 5.2 standards, so there’s no whizzy angle-of-approach (AoA) or angle-of-departure (AoD) capability or the multicasting features of LE Audio. 

The W1 also has a crypto engine, a necessity these days for any self-respecting MCU and especially so when you’ve got Bluetooth. The chip has even got an old-school segmented LCD controller, in addition to the more modern capacitive-touch interface. Taken all together, it’s got most of the ingredients for a well-connected-but-not-very-smart device like a home-automation hub or an industrial HMI. 

Not that there isn’t a lot of competition for that space. If Bluetooth 5.x is your gating item, most of the big names have MCUs with some version of it. NXP, Maxim, TI, Cypress, STMicro, and others all have BLE-enabled microcontrollers, all with Cortex hearts. The STM32WB series has the same Cortex-M4 but running at 64 GHz, teamed up with a Cortex-M0+ just for the radio. They’ve also got more flash (up to 1MB) along with similar USB, A/D, and security features. USB and LCD are optional. 

Over at Cypress (now part of Infineon), the CYW20819 is an even faster M4-based device, this time running at 96 MHz. It has less flash (256MB) than either the Renesas or STMicro devices, but more SRAM (176KB) and a full 1MB of ROM. 

Texas Instruments has multiple Bluetooth-enabled MCUs in its SimpleLink CC2642R and CC2652R product lines. Unlike the others, TI’s chips support Bluetooth 5.1, so you get the long-range/high speed option and the AoA feature. Depending on the specific feature set, these chips start as cheaply as $1.50 each, undercutting Renesas by quite a bit. 

Maxim has a group of four related MCUs, MAX32665–68, with your choice of one or two Cortex-M4 cores running at 48 MHz. Their flash capacity is the largest (1MB), as is the SRAM (560KB). Like the others, the Maxim chips have hardware security features, analog interfaces, serial controllers, and a lot of configurable I/O pins. 

NXP’s K32W041 and ’61 are twins with features similar to the Renesas part, right down to the 48-MHz CPU, security hardware, memory capacities, and BLE 5.0 support. 

So, we have choices. Bluetooth is a remarkably complicated protocol, so all these vendors supply ready-made software stacks. Most have small development boards, too, complete with test, debug, and expansion interfaces. Running the stack on a dedicated processor core, as STMicro does, isn’t a bad idea. On the other hand, that means you’re now debugging a two-processor system. But at least you know where to start. 

Leave a Reply

featured blogs
May 24, 2024
Could these creepy crawly robo-critters be the first step on a slippery road to a robot uprising coupled with an insect uprising?...
May 23, 2024
We're investing in semiconductor workforce development programs in Latin America, including government and academic partnerships to foster engineering talent.The post Building the Semiconductor Workforce in Latin America appeared first on Chip Design....

featured video

Why Wiwynn Energy-Optimized Data Center IT Solutions Use Cadence Optimality Explorer

Sponsored by Cadence Design Systems

In the AI era, as the signal-data rate increases, the signal integrity challenges in server designs also increase. Wiwynn provides hyperscale data centers with innovative cloud IT infrastructure, bringing the best total cost of ownership (TCO), energy, and energy-itemized IT solutions from the cloud to the edge.

Learn more about how Wiwynn is developing a new methodology for PCB designs with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Designing for Functional Safety with Infineon Memory
Sponsored by Mouser Electronics and Infineon
In this episode of Chalk Talk, Amelia Dalton and Alex Bahm from Infineon investigate the benefits of Infineon’s SEMPER NOR Flash and how the reliability, long-term data retention, and functional safety compliance make this memory solution a great choice for a variety of mission critical applications. They also examine how SEMPER NOR Flash has been architected and designed for functional safety and how Infineon’s Solutions Hub can help you get started using SEMPER NOR Flash in your next design.
Apr 22, 2024
4,350 views