feature article
Subscribe Now

AIStorm Makes AI Sensors Cheap & Easy

Startup Embeds Logic Underneath Image Sensor Chips

Sometimes it’s the little things. Call it small and cute, cheap and cheerful, wee and wonderful, sometimes the inexpensive entry-level products can be the most interesting. So it is with this week’s company. 

Business guru Clayton Christensen used the example of Honda motorcycles to illustrate his now-famous thesis of “disruptive innovation.” Back in the 1970s, American motorcycles were big, heavy, fast, and expensive. Honda didn’t make anything close to that. Its Super Cub was tiny and underpowered, practically a toy. So, Honda decided to sell it through sporting goods stores, not motorcycle shops. It was a huge hit, largely because it appealed to an entirely different audience that would have never visited a normal motorcycle retailer. 

I maintain that ARM processors were successful for the same reason. It was the delivery mechanism, not the product, that made ARM popular with cellphone makers and, later, the rest of the world. One offered IP while everyone else sold chips. Even now, engineers rarely cross-shop between IP licenses and boxes of processors. 

Today, AI chips are kind of a big deal, with most vendors touting their extreme high-end performance. But there’s a wee small voice at the other end of the spectrum, saying “Let’s not forget the embedded developer working within a $25 bill of materials.” 

Say hello to Texas-based AIStorm. This 30-person startup makes small, efficient, low-cost image sensors with AI intelligence built right in. They’re the cheap and cheerful alternative to the high-end (or even midrange) AI acceleration hardware we see elsewhere. The company’s two main products combine image sensors and AI acceleration with a single-digit price tag. 

As m’colleague described earlier, AIStorm’s chips are different in a couple of ways. First, they combine the image sensor and the AI acceleration hardware onto a single monolithic die. In a way, the sensor is the accelerator, and vice versa. While this is an interesting engineering exercise, the real benefit is reduced power consumption and quicker response time. So says David Schie, CEO and cofounder of the company. 

“Most imagers have pixels that get converted to digital format, then get sent to some AI engine to unpack and process through an array of adders and multipliers. Our multiplier works on electrons directly from pixels. There’s no conversion. It’s the input layer of a machine learning system.” 

Second, AIStorm’s chips are small and therefore cheaper than the competition’s. Take a look at most AI die layouts and you’ll see a lot of memory. In contrast, AIStorm embeds its memory directly underneath each pixel’s photodiode, so they take up approximately zero horizontal space. The memory cells are, in fact, just capacitive vias between mask layers. But they maintain a charge long enough for the digital logic to do its work.

Finally, AIStorm uses mature fabrication processes, namely Tower’s 180nm CS180 and Dongbu’s 90nm nodes. Cutting edge these ain’t, but they’re also not expensive. 

In keeping with the low-cost, high-volume strategy, AIStorm is targeting simple IoT devices, not enterprise-scale cloud-based AI. These aren’t in the same league as nVidia’s Ampere or Google’s TPU. They’re not even an alternative to consumer security cameras. Think passive infrared (PIR), but way smarter. 

The company’s mainline Mantis image sensor has a 96×96 array of photodiodes overlaying AIStorm’s custom AI hardware. (Upgraded versions with QVGA and full HD resolution are in the works, says Schie.) That’s enough resolution to recognize hands, faces, furniture, and other familiar objects. Something as simple as an automated hand dryer could use one to detect when someone’s hands are present, which might be more reliable than a basic IR sensor. HVAC systems can use one to tell when a meeting room is occupied, or when a window is opened or closed. A video doorbell might generate fewer false positives if it can distinguish between humans and wildlife, or just clouds. The company hopes that a quick and easy, but intelligent, image sensor could be a game-changer for a variety of products. 

Mantis is joined by Cheetah, a faster version (natch) intended for industrial inspection applications. Cheetah has lower resolution but faster frame rates, at up to 60,000 frames/sec, making it useful for fleeting events. Gazelle detection, perhaps. 

One problem with entry-level AI hardware is the entry-level experience of your customers. Most of us are new to AI/ML workloads and the tools involved. To ease that transition, AIStorm leans on both the old and the new. Its chips are programmed using TensorFlow-based tools, a de facto standard among ML programmers. Those neural network models can be developed on a PC and the weights downloaded to the chip. AIStorm also provides its own library of models to get users started. A hardware-development kit is coming soon. 

Because processing is done on-chip, Mantis and Cheetah aren’t as “chatty” as normal dumb image sensors. In fact, they may produce no output at all until they detect whatever they’re programmed to recognize. An occupancy sensor might sit dormant until someone enters the room, at which point it signals the HVAC system to ramp up the temperature. This makes Mantis and Cheetah more energy-efficient than conventional sensors, according to the company. 

Sometimes the littlest things can make a difference. Small size, small price, small learning curve. AIStorm’s Mantis and Cheetah might be the small entry points to a larger world of AI for IoT.

Leave a Reply

featured blogs
Sep 26, 2021
https://youtu.be/Ivi2dTIcm9E Made at my garden gate (camera Carey Guo) Monday: Ten Lessons from Three Generations of Google TPUs Tuesday: At a Digital Crossroads Wednesday: Announcing Helium, Hybrid... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 24, 2021
Wi-Fi, NB-IoT, Bluetooth, LoRaWAN... This webinar will help you to choose the appropriate connectivity protocol for your IoT application....
Sep 23, 2021
The GIRLS GO Engineering scholarship provides opportunities for women in tech and fosters diversity in STEM; see the winners of our 2021 engineering challenge! The post GIRLS GO Engineering! Empowers Our Next-Gen Women in Tech appeared first on From Silicon To Software....
Sep 23, 2021
The Global Environment Facility Small Grants Programme (GEF SGP), implemented by the United Nations Development Programme, is collaborating with the InnovateFPGA contest. Showcase your  skills with Intel Edge-Centric FPGAs and help develop technical solutions that reduce env...

featured video

Accurate Full-System Thermal 3D Analysis

Sponsored by Cadence Design Systems

Designing electronics for the data center challenges designers to minimize and dissipate heat. Electrothermal co-simulation requires system components to be accurately modeled and analyzed. Learn about a true 3D solution that offers full system scalability with 3D analysis accuracy for the entire chip, package, board, and enclosure.

Click here for more information about Celsius Thermal Solver

featured paper

Seamlessly connect your world with 16 new wireless MCUs for the 2.4-GHz and Sub-1-GHz bands

Sponsored by Texas Instruments

Low-power wireless microcontroller (MCU) shipments are expected to double over the next four years to more than 4 billion units. This massive influx of MCUs will result in more opportunities for wireless connectivity than ever before, with growth across a wide range of applications and technologies. With the addition of 16 new wireless connectivity devices, we are empowering you to innovate, scale and accelerate the deployment of wireless connectivity – no matter what or how you are connecting.

Click to read more

featured chalk talk

ROHM's KX132-1211 & KX134-1211 Accelerometers

Sponsored by Mouser Electronics and ROHM Semiconductor

Machine health monitoring is a key benefit in the Industry 4.0 revolution. Integrating data from sensors for vibration detection, motion detection, angle measurement and more can give a remarkably accurate picture of machine health, and timely warning of impending failure. In this episode of Chalk Talk, Amelia Dalton chats with Alex Chernyakov of ROHM Semiconductor about the key considerations in machine health monitoring, and how a new line of accelerometers for industrial applications can help.

Click here for more information about Kionix / ROHM Semiconductor KX134 & KX132 Tri-axis Digital Accelerometers