feature article
Subscribe Now

Cortex-A35 Is More, Better, Faster

ARM’s Newest CPU Core Is Just Like Its Predecessors, But More So

“Mom, they did it again!”

How do they do it? The engineers at ARM, I mean. They just keep cranking out new microprocessors, month after month, year after year. And they all look… so much the same.

It’s like Taco Bell: they have just three ingredients but they’re brilliant at mixing them around in different ways to look like new products. It’s impressive, really. And evidently quite profitable. 

This week’s 64-bit burrito is ARM’s new Cortex-A35 microprocessor core. The –A35 is expected to replace the existing Cortex-A5 and –A7 in ARM’s low-end lineup of A-class processors. (It has nothing to do with the low-range M-class or midrange R-class designs.) As such, ARM expects the –A35 to power next year’s entry-level smartphones, which the company sees as a growing and attractive market.

Unlike the –A5 and –A7, which are both based on version 7 of ARM’s playbook (ARMv7-A), the new –A35 is a 64-bit design based on the newer ARMv8-A architecture. That means the A35 gets 64-bittedness, a redesigned instruction pipeline, and higher potential clock speeds. A better processor, in other words.

The A35 is also a lot more “efficient” than its predecessors. That word comes up a lot in ARM’s official press material and in any discussion of the –A35’s benefits. The company describes it as “ultra-high efficiency” and their “most efficient processor ever.” That’s swell, but how, exactly, does one measure efficiency? What are the units? My scientific calculator can’t convert watts, joules, ergs, newtons, or horsepower to “efficiencies.”

By way of clarification, ARM says they’re measuring “performance over power consumption: milliwatts.”  Okay, then. It’s a simple ratio of one unknown number over another unknown number.

Performance doing what? A benchmark program? A collection of benchmarks? Whose benchmarks, run under what circumstances? And those milliwatts – are they measured while running those same benchmarks, or while doing something else entirely? And are we comparing the same test(s) on both the old Cortex-A7 and the new –A35, in which case, we’re dealing with two ratios of four unknown numbers? My calculator can’t do that, either.

We can glean a little wisdom from the quantifiable information available, however. The –A35 apparently uses 10% less power than its –A7 predecessor, due to its “more efficient” design. That assumes both are built in the same semiconductor process and run at the same clock frequency. Interestingly, another 10% reduction can be had simply by recompiling your benchmark code using better compilers and redesigning your core layout with better EDA tools, something ARM terms “flow improvements.” All of which suggests that current –A7 users might be leaving some optimizations on the table.

Integer performance improves by a scant 6% over the –A7, which isn’t too surprising since both support the same instruction set sluicing through similar 8-stage pipelines. Some tweaks to branch prediction and a redesigned instruction-fetch stage are the culprits. The –A35, like its predecessors, does only very limited dual issue; anything more aggressive would have sacrificed “efficiency” – and moved it up the company’s product value chain.

Browser performance gets a 16% bump, mostly due to a bigger TLB, and floating-point math improves by one-third, a significant jump, thanks to a redesigned Neon unit. Double-precision FP ops are the biggest beneficiaries. ARM’s best result of all was a 40% boost in Geekbench scores.

ARM also says that the –A35 consumes 32% less power than its big sister, the –A53 (dyslexia alert!), all other things being equal. That’s remarkable, since they’re both based on the same underlying v8-A architecture and their features sets are about the same. Like the –A53, the –A35 can be configured with one, two, or four identical CPU cores working together in a single cluster.

The –A35’s role in the world is to replace last year’s models, the –A5 and –A7. There’s a bit of a performance bump over the v7 designs and, apparently, a bit of an efficiency improvement as well. And the new core can run 64-bit code, so there’s that. But overall, you’re looking at a tweaked –A7, something that sits at the bottom end of ARM’s mainstream product line. An upgrade, if you like. But one that comes with a new-CPU price tag.

ARM will continue to license the Cortex-A5 and –A7; there’s no reason to ever refuse to sell them. (You can still buy a license to the ancient ARM7TDMI if you really want to.) But their prices will tumble as the –A35 takes their place. So if you’re an existing user of an –A7, for example, you have to ask yourself if the incremental improvements to the –A35 are worth the price of admission. ARM never publishes its price list, but it’s a safe bet that a new –A35 license will run well into six figures, plus a new royalty agreement. Is a 10% reduction in power consumption (versus the –A7) worth that? Or the 16% improvement in browser performance? To the extent that Geekbench approximates your own workload, its 40% thumping of a same-speed –A7 might make it interesting.

Product-line management is a wonderful thing. Automakers, clothing designers, consumer-electronics firms, and even fast-food restaurants all adjust their offerings to provide an attractive option at every conceivable price level. There’s a real art to making a few basic ingredients look like a full menu. And Cambridge HQ has got that recipe nailed. 

12 thoughts on “Cortex-A35 Is More, Better, Faster”

  1. Pingback: GVK Bioscience
  2. Pingback: juegos friv
  3. Pingback: TS Escorts
  4. Pingback: chimney repair
  5. Pingback: lesen Sie dies
  6. Pingback: DMPK

Leave a Reply

featured blogs
Aug 1, 2021
https://youtu.be/I0AYf5V_irg Made in Long Ridge Open Space Preserve (camera Carey Guo) Monday: HOT CHIPS 2021 Preview Tuesday: Designed with Cadence Video Series Wednesday: July Update Thursday:... [[ Click on the title to access the full blog on the Cadence Community site. ...
Jul 30, 2021
You can't attack what you can't see, and cloaking technology for devices on Ethernet LANs is merely one of many protection layers implemented in Q-Net Security's Q-Box to protect networked devices and transaction between these devices from cyberattacks. Other security technol...
Jul 29, 2021
Learn why SoC emulation is the next frontier for power system optimization, helping chip designers shift power verification left in the SoC design flow. The post Why Wait Days for Results? The Next Frontier for Power Verification appeared first on From Silicon To Software....
Jul 28, 2021
Here's a sticky problem. What if the entire Earth was instantaneously replaced with an equal volume of closely packed, but uncompressed blueberries?...

featured video

Electromagnetic Analysis for High-Speed Communication

Sponsored by Cadence Design Systems

When your team is driving the future of breakthrough technologies like autonomous driving, industrial automation, and healthcare, you need software that helps meet approaching deadlines and increasingly high-performance demands. Learn how a system analysis solution can provide accurate 3D modeling, electromagnetic simulation, and electrothermal simulation at the chip, package, PCB, and system level.

Click to learn more

featured paper

Carmakers charge ahead with electric vehicle powertrain integration

Sponsored by Texas Instruments

Advancements to electric vehicle (EV) powertrain architectures help customers cut system-design costs in half while maximizing power density, increasing efficiency, improving reliability, and making EVs more affordable for more people.

Click to read more

featured chalk talk

PCI Express: An Interconnect Perspective

Sponsored by Samtec

New advances in PCIe demand new connectors, and the challenge of maintaining signal integrity has only gotten tougher. In this episode of Chalk Talk, Amelia Dalton chats with Matthew Burns of Samtec about why PCIe isn’t just for PCs, what PCIe over fiber looks like, and how Samtec’s team of signal integrity experts can help with your next PCIe design.

Click here for more information about PCI Express® Solutions from Samtec