feature article
Subscribe Now

Keepin’ It Real

Rambus Gets Into the Chip Business in a Very Small Way

Comedian Steve Martin once did a funny bit back in the 1980s about certain phrases you’ll never hear anyone say, such as “hand me that piano” or “please saw my legs off.” He might have also included “intellectual property.” That’s a term your parents probably never used in everyday conversation. Today, IP is everywhere. We license our books, music, and movies – we don’t buy them anymore. Art is considered IP. Inventions are IP. And, of course, there’s semiconductor IP.

One of the biggest microprocessor companies in the world today doesn’t really make microprocessors. ARM Holdings is a $20 billion corporation – that’s half the size of General Motors – but the company doesn’t make anything. ARM is like a team of architects, designing and drafting drawings that other companies turn into real products. It’s a lucrative business. Or, it can be. And a lot of IP companies want to be the next ARM.

Rambus is a lot like ARM. Same basic business model, same clientele, same sort of revenue stream. The two companies are even complementary in many ways. ARM designs CPUs and related peripherals, while Rambus keeps its focus on – wait for it – RAM bus interfaces. Until recently, Rambus did just what it says over the door: they designed buses for RAMs. The company’s recent acquisitions of Cryptography Research, Unity Semiconductor, and the patent portfolios of various other small fry have suggested, however, that bigger things were in the works.

Say hello to that bigger thing.

Starting right now, Rambus is in the chip business. That’s right: the company will design, build, and sell real, physical chips. You know, like a real company. With their name on them and everything.

That’s kind of a big deal, even if the chips themselves are kind of… well, boring. You see, Rambus isn’t making DRAMs or SRAMs or flash devices or MRAMs or anything exotic like that. Instead, the company has chosen to stick its toe in the semiconductor waters by making a pair of tiny little interface chips that (perhaps predictably) buffer the RAM bus. Some things never change.

Here’s the deal. The latest DDR4 bus specification is complicated. It’s fast, it’s tricky, and it’s hard to make it work properly. That’s a problem for everybody. It’s a problem for DRAM manufacturers, it’s a problem for systems vendors, and it’s a problem for Rambus because it’s delaying adoption of the new DDR4 interfaces – which Rambus licenses for a profit. If system vendors aren’t happy, then Rambus isn’t happy. So it’s in everyone’s best interest to make DDR4 easier to use. A classic win-win-win, right?

One of the delightful capabilities of DDR4 is that you can double-up on the number of DRAM chips on a DIMM, thus doubling the capacity of your module (or motherboard) without doubling the amount of space. One of the vexing problems with DDR4, however, is that such doubling makes the already-shaky signal integrity even worse. Like any fast bus, DDR4 relies on very fast signaling with very low voltage swings. That’s hard enough for a normal DIMM; double the number of loads and traces and you’ve got yourself a signal-integrity challenge of the first order. And when your spiffy new high-capacity DIMM doesn’t work reliably? Good luck debugging that sucker.

What DDR4 users want and need is a little buffer chip to make high-capacity DIMMs work reliably. And can you guess what Rambus has just announced? That’s right, children, the company’s new R+ RB26-DB is a data buffer for exactly that purpose. It sits between your DDR4 memory controller and the DRAMs themselves, reducing the loading on all the high-speed signals that give DDR4 its goodness. Typically, each DIMM would have nine of those chips, one for each DRAM, placed somewhere near the edge connector.

There’s also a companion device, the R+ RB26-RCD (register clock driver), which you’d use for single-density DIMMs where you don’t need the nine buffer chips. Rambus sells its new devices in a bundle. You can get either a single RCD or a bag of ten chips with nine buffers plus one RCD. Pricing is described as “competitive,” which is what you’d expect them to say.

So is Rambus the first to market here? Has the company invented a new category of memory-interface devices to jumpstart DDR4 uptake? Not by a long shot. The new RB26 chips will enter a market niche already occupied by IDT, Texas Instruments, Montage Technology, and others. So… what exactly does the Rambus contribution offer that its competitors don’t?

The Rambus brand name, for one. This is the company that (quite possibly) developed your memory controller’s interface, so who better to design its buffering as well? C’mon, it’s Rambus! This is what they do. The company also says its new RB26 chips have more speed margin and headroom in them than competing devices, up to and including an eventual 2933-Mbps upgrade. Rambus also claims some as-yet-undisclosed debug hooks into the RB26 parts, which should be good news for system designers trying to get their high-capacity systems to work reliably.

So on one hand, the DDR4 buffer business is already established and well defined. A safe bet, in other words. On the other hand, Rambus has never made chips before. This is a big change in the company’s business model. It now has to deal with inventory, manufacturing, cost control, shipping and receiving, and a new sales force, not to mention a completely different customer base. In the past, Rambus licensed its IP to DRAM manufacturers and a handful of chipset vendors. Now, its RB26 parts will be sold to system designers, server makers, and module manufacturers. It’s a whole new ballgame. Why would the company undertake such a big and risky change?

“Growth opportunity” is the polite term the company uses in official communication. And that’s entirely accurate. It’s an opportunity to grow the company’s business outside of its usual, and quite narrow, clientele. There are only so many companies that can license memory IP. Fewer all the time, in fact, as that industry consolidates. Once you’ve licensed every living DRAM manufacturer – which Rambus has emphatically done—what’s left? To corrupt an old saying, you can’t squeeze royalties from a stone.

In order to grow, Rambus has to expand its horizons, and it seems to be heading in two directions. First, the acquisition of Cryptography Research and other patent portfolios gives it a whole new line of IP that it can license to a whole new field of potential customers outside of the memory business. Second, the new hardware business allows Rambus to approach yet another new customer base, this time with a product line that doesn’t require so many lawyers. “You like the chip? Fine. Sign here, and we’ll back up the delivery truck.” Simple.

The RB26 is just a modest start to what promises to be a long-term change for Rambus. Buffer chips are just the tip of the proverbial iceberg. No company gets into the fabless chip business on a lark. No, chip vending is part of the company’s long-term strategy, which will likely include its own IP encapsulated in its own devices. Think cryptography accelerators, SERDES, and interface drivers. Rambus is erecting a new business on the foundations that IP built. You don’t hear that every day. 

13 thoughts on “Keepin’ It Real”

  1. Pingback: pax 3 davinci iq
  2. Pingback: Dom
  3. Pingback: day trading
  4. Pingback: gvk biosciences
  5. Pingback: juegos de friv
  6. Pingback: Judi Bola 88
  7. Pingback: online casino
  8. Pingback: free slots
  9. Pingback: insulation
  10. Pingback: satta matka

Leave a Reply

featured blogs
Oct 26, 2020
Do you have a gadget or gizmo that uses sensors in an ingenious or frivolous way? If so, claim your 15 minutes of fame at the virtual Sensors Innovation Fall Week event....
Oct 26, 2020
Last week was the Linley Group's Fall Processor Conference. The conference opened, as usual, with Linley Gwenap's overview of the processor market (both silicon and IP). His opening keynote... [[ Click on the title to access the full blog on the Cadence Community s...
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through-hole products, or a single or double row surface mount with a larger centerline rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and con...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...

featured video

Better PPA with Innovus Mixed Placer Technology – Gigaplace XL

Sponsored by Cadence Design Systems

With the increase of on-chip storage elements, it has become extremely time consuming to come up with an optimized floorplan with manual methods. Innovus Implementation’s advanced multi-objective placement technology, GigaPlace XL, provides automation to optimize at scale, concurrent placement of macros, and standard cells for multiple objectives like timing, wirelength, congestion, and power. This technology provides an innovative way to address design productivity along with design quality improvements reducing weeks of manual floorplan time down to a few hours.

Click here for more information about Innovus Implementation System

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

Automotive MOSFET for the Transportation Market

Sponsored by Mouser Electronics and Infineon

MOSFETS are critical in automotive applications, where long-term reliability is paramount. But, do we really understand the failure rates and mechanisms in the devices we design in? In this episode of Chalk Talk, Amelia Dalton sits down with Jeff Darrow of Infineon to discuss the role of MOSFETS in transportation, solder inspection, qualification.

Click here for more information about Infineon Technologies OptiMOS™ 5 Power MOSFETs