feature article
Subscribe Now

Dhrystone Is Dead; Long Live CoreMark!

“There are lies, damn lies, and benchmarks.” With apologies to Mark Twain (or possibly Benjamin Disraeli or maybe Henry Du Pré Labouchère), benchmarks have been used and abused ever since there have been computers. Like the question about when the first auto race was held (“as soon as the second automobile was built”), the question of who makes the fastest computer has beguiled and bedeviled engineers for ages. Now, just maybe, we may be making progress toward settling that dispute.

The bigger the computer, the bigger the benchmark. Conversely, testing just the microprocessor by itself requires only the simplest of code loops – or so it might appear. But even the simplest benchmark distorts the true nature of the processor you’re testing, as any “marketing engineer” can tell you. No matter what you measure – clock speed, arithmetic agility, procedural proficiency, or what have you – you’re always leaving something out. No synthetic test can truly encapsulate all the goodness (and badness) of a microprocessor.

For most of recorded history, the Dhrystone benchmark was the acid test for microprocessors, and sometimes for complete systems. Dhrystone is woefully inadequate, but that hasn’t stopped millions of curious programmers and incautious marketeers from using it to establish their bona fides. Intended as an integer-only alternative to the Whetstone benchmark (whose name it clearly mimics), Dhrystone is small, simple, easily portable, and utterly useless.

Enter EEMBC, the Embedded Microprocessor Benchmark Consortium. This nonprofit industry group has developed dozens of intricately engineered and skillfully crafted benchmarks for a variety of specialty industries. There are EEMBC benchmarks for automotive applications, industrial controllers, fax machines, and most other types of embedded applications you can name. What the group hasn’t ever created was a basic, all-purpose benchmark to replace the ubiquitous Dhrystone – until now.

All Hail CoreMark

Starting this week, the group has released CoreMark, a free benchmark for measuring your favorite microprocessor or microcontroller. CoreMark is distributed as C source code that anyone can download and compile. In fact, please do. Anyone can post their CoreMark benchmark results at www.CoreMark.org, which acts as a public clearinghouse for CoreMark results from all over the world. For embedded developers shopping for their next processor or microcontroller, the site should become a valuable resource.

CoreMark makes very few assumptions about the target hardware (apart from the existence of a working C compiler), so it works on chips with or without caches, with or without floating-point units, with or without specific peripherals, and so on. In short, CoreMark should run on just about any processor worthy of the name and deliver useful results.

Where does CoreMark succeed where Dhrystone fails? By paying attention to the way we write code and the way certain, uh, overeager marketing departments have, shall we say, “optimized” their Dhrystone scores over the years. Because Dhrystone is very small and simple, and because its results are often given so much weight, there’s a big incentive to tweak it – sometimes to the point where it compiles into little more than a sequence of NOPs. Clearly, some kind of legitimate alternative was needed.

In contrast to Dhrystone, CoreMark can’t be optimized away with compiler switches or creative programming. And although it’s still a synthetic benchmark, CoreMark mimics real-life workloads better than Dhrystone ever could. It contains a mixture of integer arithmetic, matrix manipulation, linked lists, state-machine operation with data-dependant branches, and a CRC, among other typical tasks. It’s also fairly smart about timing the right things, like the actual loops and not the overhead of library calls. Dhrystone was often a better test of the compiler than of the processor; CoreMark is designed to invert that relationship.

I’m sure CoreMark isn’t perfect – no benchmark is – and I’m equally sure that many programmers and marketing dweebs will cry foul and point to some arcane feature of some equally arcane chip that isn’t adequately represented in the test. Frankly, I don’t much care. Anything that displaces the miserable Dhrystone test is okay in my book. The EEMBC folks have shown themselves to be very clever when it comes to crafting practical and reliable benchmarks. We have much to be hopeful for.  

Leave a Reply

featured blogs
May 24, 2022
Today is going to be my monthly update. This normally runs on the last Friday of the month, but that's a Cadence Global Recharge Day, so we will all be off. For various other reasons, I need to... ...
May 20, 2022
I'm very happy with my new OMTech 40W CO2 laser engraver/cutter, but only because the folks from Makers Local 256 helped me get it up and running....
May 19, 2022
Learn about the AI chip design breakthroughs and case studies discussed at SNUG Silicon Valley 2022, including autonomous PPA optimization using DSO.ai. The post Key Highlights from SNUG 2022: AI Is Fast Forwarding Chip Design appeared first on From Silicon To Software....
May 12, 2022
By Shelly Stalnaker Every year, the editors of Elektronik in Germany compile a list of the most interesting and innovative… ...

featured video

Synopsys PPA(V) Voltage Optimization

Sponsored by Synopsys

Performance-per-watt has emerged as one of the highest priorities in design quality, leading to a shift in technology focus and design power optimization methodologies. Variable operating voltage possess high potential in optimizing performance-per-watt results but requires a signoff accurate and efficient methodology to explore. Synopsys Fusion Design Platform™, uniquely built on a singular RTL-to-GDSII data model, delivers a full-flow voltage optimization and closure methodology to achieve the best performance-per-watt results for the most demanding semiconductor segments.

Learn More

featured paper

Intel Agilex FPGAs Deliver Game-Changing Flexibility & Agility for the Data-Centric World

Sponsored by Intel

The new Intel® Agilex™ FPGA is more than the latest programmable logic offering—it brings together revolutionary innovation in multiple areas of Intel technology leadership to create new opportunities to derive value and meaning from this transformation from edge to data center. Want to know more? Start with this white paper.

Click to read more

featured chalk talk

Traveo II Microcontrollers for Automotive Solutions

Sponsored by Mouser Electronics and Infineon

Today’s automotive designs are more complicated than ever, with a slew of safety requirements, internal memory considerations, and complicated power issues to consider. In this episode of Chalk Talk, Amelia Dalton chats with Marcelo Williams Silva from Infineon about the Traveo™ II Microcontrollers that deal with all of these automotive-related challenges with ease. Amelia and Marcelo take a closer look at how the power efficiency, smart IO signal paths, and over the air firmware updates included with this new MCU family will make all the time-saving difference in your next automotive design.

Click here for more information about Cypress Semiconductor Traveo™ II 32-bit Arm Automotive MCUs