industry news
Subscribe Now

SiTime Enters Wearables, IoT Markets with 32 kHz MEMS

SUNNYVALE, Calif. – June 4, 2014 – SiTime Corporation, an analog semiconductor company, today introduced the smallest, lowest power 32 kHz TCXO (temperature compensated oscillator). With its tiny footprint and ultra-low power consumption, the SiT1552 MEMS TCXO enables a paradigm shift in the size and battery life of wearable electronics and Internet of Things (IoT); such benefits are not available from legacy quartz devices.

“The markets for wearables and Internet of Things (IoT) are growing at a rapid pace. With this growth comes a need for customized devices that enable new features and higher performance,” said Marwan Boustany, Senior Analyst for MEMS & Sensors at IHS. “SiTime is a market share leader in the MEMS timing market and these advanced, 32 kHz MEMS TCXOs further support their market position.”

“By using its game-changing TempFlat MEMSTM and analog technology, SiTime has once again shattered the limitations of quartz. The SiT1552 MEMS TCXO is 20% of the size and consumes 50% of the power of comparable quartz devices,” said Piyush Sevalia, executive vice president of marketing at SiTime. “Our MEMS enable new system architectures that offer higher performance, small size and longer battery life. With another industry first, we continue to revolutionize the timing industry with our breakthrough MEMS solutions.”

The SiT1552 is the smallest TCXO available today and is available in a 1.5 x 0.8 mm chip scale package (CSP). The SiT1552 MEMS TCXO can perform various functions in a system such as:

  • Reference for real time clock (RTC) function
  • Sleep clock for connectivity – Bluetooth, Bluetooth Low Energy, WiFi
  • Heartbeat clock for battery supervisory function

Compared to a quartz TCXO, the SiT1552 MEMS TCXO is:

  • 20% of the size and is available in a 1.5 x 0.8mm CSP
  • 50% lower power, typically consuming less than 1 micro-amp
  • 45% thinner, with a height of 0.55 mm
  • 10 times faster startup, with a startup time of 0.3 milliseconds
  • 30 times higher shock resistance
  • 15 times higher reliability, at 500 million hours MTBF

Additional features of the SiT1552 include:

  • ±5 PPM frequency stability that enables 2 to 3 times longer battery life compared to a 180 PPM quartz resonator
  • NanoDriveTM, a programmable, low swing output that minimizes power and directly interfaces to the oscillator / RTC circuit in the downstream processor or PMIC
  • 1.5 to 3.63V operation, making it ideal for products that use a coin-cell or super-cap battery backup

Devices in the 1508 CSP are available in production now. Pricing is available upon request.

For more information and datasheets, visit www.sitime.com/products/32-khz-oscillators/sit1552
SiT1552 graphics: www.sitime.com/sit1552-press-kit

About SiTime

SiTime Corporation, an analog semiconductor company, is revolutionizing the $5B timing market with silicon MEMS timing solutions that replace legacy quartz products. With 80% market share and over 200 million devices shipped, SiTime is driving the electronics industry to use 100% silicon-based timing.

SiTime’s configurable solutions enable customers to differentiate their products with higher performance, reduced size and better reliability. The rich feature set and flexibility of our solutions allows customers to consolidate their supply-chain, reducing cost of ownership and time to market. By using standard semiconductor processes and high volume plastic packaging, SiTime offers the best availability and shortest lead times in the industry.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

High Voltage Stackable Dual Phase Constant On Time Controllers - Microchip and Mouser
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Chris Romano from Microchip and Amelia Dalton discuss the what, where, and how of Microchip’s high voltage stackable dual phase constant on time controllers. They investigate the stacking capabilities of the MIC2132 controller, how these controllers compare with other solutions on the market, and how you can take advantage of these solutions in your next design.
May 22, 2023
38,511 views