editor's blog
Subscribe Now

Single-Radio Zigbee and Thread

Earlier this year we saw that Zigbee and Thread were collaborating to implement Zigbee profiles or “clusters,” which normally appear at the top of a Zigbee stack, over the Thread stack as well.

Strategically, this allows top-level Zigbee to handle IP-based data, since Thread includes 6LoWPAN, an IPv6 adaptation for running over 802.15.4, the radio protocol used by Zigbee. Much of the world operates with IP on layer 3; this allows Zigbee infrastructure to participate.

That’s at the top of the stack. Meanwhile, at the bottom, Greenpeak recently announced a single-radio implementation of Zigbee and Thread in their GP712. It can handle both flows with a single radio – or, alternatively, it can serve as a single-stack chip, usable for either stack with a single stocking unit. It needs a thin layer to mux/demux the traffic into the appropriate stack once it leaves the radio.

This got me thinking about how these two reconvergent stacks might play together in different devices. This is based on realizing that an Internet of Things (IoT) edge node is likely to implement only one of the two protocols. So a mixed device isn’t likely to serve there (except as a single-SKU chip that goes either way).

Greenpeak says they’re targeting infrastructure nodes – hubs, gateways, set-top boxes and the like – and those devices are indeed likely to be managing multiple traffic streams across multiple platforms. On the other hand, it’s unlikely that they’ll be working at the application layer (except perhaps for deep packet inspection).

It may be a failure of imagination on my part, but the only node I can picture that might realistically process multiple protocols and implement the application layer would be a server. I’d include a phone as a possible server, although phones typically don’t do 802.15.4.

The following figures illustrate the different configurations that I’ve derived from this mental wandering. Presumably, the GP712 could serve in any of them with appropriate configuration.

Greenpeak_Zigbee-Thread.png 

You can read more about Greenpeak’s new device in their announcement.

Leave a Reply

featured blogs
Jul 5, 2022
The 30th edition of SMM , the leading international maritime trade fair, is coming soon. The world of shipbuilders, naval architects, offshore experts and maritime suppliers will be gathering in... ...
Jul 5, 2022
By Editorial Team The post Q&A with Luca Amaru, Logic Synthesis Guru and DAC Under-40 Innovators Honoree appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Demo: Achronix Speedster7t 2D NoC vs. Traditional FPGA Routing

Sponsored by Achronix

This demonstration compares an FPGA design utilizing Achronix Speedster7t 2D Network on Chip (NoC) for routing signals with the FPGA device, versus using traditional FPGA routing. The 2D NoC provides a 40% reduction in logic resources required with 40% less compile time needed versus using traditional FPGA routing. Speedster7t FPGAs are optimized for high-bandwidth workloads and eliminate the performance bottlenecks associated with traditional FPGAs.

Subscribe to Achronix's YouTube channel for the latest videos on how to accelerate your data using FPGAs and eFPGA IP

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

Hot-Swap and Power Protection -- Mouser Electronics and Analog Devices

Sponsored by Mouser Electronics and Analog Devices

When it comes to our always-on, critical systems we need to carefully consider power protection and maintainability. In this episode of Chalk Talk, Amelia Dalton and Dwight Larson investigate the issues that surround hot-plugging into an energized power supply, the best solutions to consider, what the different hot-swap circuit topologies look like for a variety of applications and why the MAX15090B/C with its innovative current foldback startup may be the best solution for your next design.

Click here for more information about Maxim Integrated MAX15090B/MAX15090C Hot Swap ICs