editor's blog
Subscribe Now

Single-Radio Zigbee and Thread

Earlier this year we saw that Zigbee and Thread were collaborating to implement Zigbee profiles or “clusters,” which normally appear at the top of a Zigbee stack, over the Thread stack as well.

Strategically, this allows top-level Zigbee to handle IP-based data, since Thread includes 6LoWPAN, an IPv6 adaptation for running over 802.15.4, the radio protocol used by Zigbee. Much of the world operates with IP on layer 3; this allows Zigbee infrastructure to participate.

That’s at the top of the stack. Meanwhile, at the bottom, Greenpeak recently announced a single-radio implementation of Zigbee and Thread in their GP712. It can handle both flows with a single radio – or, alternatively, it can serve as a single-stack chip, usable for either stack with a single stocking unit. It needs a thin layer to mux/demux the traffic into the appropriate stack once it leaves the radio.

This got me thinking about how these two reconvergent stacks might play together in different devices. This is based on realizing that an Internet of Things (IoT) edge node is likely to implement only one of the two protocols. So a mixed device isn’t likely to serve there (except as a single-SKU chip that goes either way).

Greenpeak says they’re targeting infrastructure nodes – hubs, gateways, set-top boxes and the like – and those devices are indeed likely to be managing multiple traffic streams across multiple platforms. On the other hand, it’s unlikely that they’ll be working at the application layer (except perhaps for deep packet inspection).

It may be a failure of imagination on my part, but the only node I can picture that might realistically process multiple protocols and implement the application layer would be a server. I’d include a phone as a possible server, although phones typically don’t do 802.15.4.

The following figures illustrate the different configurations that I’ve derived from this mental wandering. Presumably, the GP712 could serve in any of them with appropriate configuration.

Greenpeak_Zigbee-Thread.png 

You can read more about Greenpeak’s new device in their announcement.

Leave a Reply

featured blogs
May 8, 2024
Learn how artificial intelligence of things (AIoT) applications at the edge rely on TSMC's N12e manufacturing processes and specialized semiconductor IP.The post How Synopsys IP and TSMC’s N12e Process are Driving AIoT appeared first on Chip Design....
May 2, 2024
I'm envisioning what one of these pieces would look like on the wall of my office. It would look awesome!...

featured video

Introducing Altera® Agilex 5 FPGAs and SoCs

Sponsored by Intel

Learn about the Altera Agilex 5 FPGA Family for tomorrow’s edge intelligent applications.

To learn more about Agilex 5 visit: Agilex™ 5 FPGA and SoC FPGA Product Overview

featured paper

Altera® FPGAs and SoCs with FPGA AI Suite and OpenVINO™ Toolkit Drive Embedded/Edge AI/Machine Learning Applications

Sponsored by Intel

Describes the emerging use cases of FPGA-based AI inference in edge and custom AI applications, and software and hardware solutions for edge FPGA AI.

Click here to read more

featured chalk talk

Accessing AWS IoT Services Securely over LTE-M
Developing a connected IoT design from scratch can be a complicated endeavor. In this episode of Chalk Talk, Amelia Dalton, Harald Kröll from u-blox, Lucio Di Jasio from AWS, and Rob Reynolds from SparkFun Electronics examine the details of the AWS IoT ExpressLink SARA-R5 starter kit. They explore the common IoT development design challenges that AWS IoT ExpressLink SARA-R5 starter kit is looking to solve and how you can get started using this kit in your next connected IoT design.
Oct 26, 2023
25,983 views