editor's blog
Subscribe Now

Two Kinds of IoT Fog

We’ve heard about the role of the Cloud in the Internet of Things (IoT). It’s analytics and other decision-making that happens in some remote server farm somewhere to serve some “edge-node” device connected over the internet. And you’ve probably heard of the variant on that called the “fog,” where some of that computing is done on a machine local to the edge node, reducing communication traffic and latency.

But… did you know that there are two flavors of fog? And that this actually has an analog in the IoT?

San Francisco is famous as a foggy city, but, unless it’s really bad, the fog doesn’t actually hit the ground. It’s generated by the “marine layer,” coming in off of the cold ocean waters. It’s the West Coast version of the East Coast’s humidity – with no warm Gulf Stream. Newcomers will sometimes look up during a typical San Fran foggy day and wonder, “Why do you call this fog? It’s just cloudy.” (Until you get to a hill or the Outer Richmond, anyway.)

What most people are used to is ground fog (also locally called tule – “too-lee” – fog , named after a prevalent form of bulrush in the local delta from which the fog might seem to arise). Because ground fog originates with moisture on the ground, it never seems simply cloudy. It’s always all the way down; the only question is how high it rises. (And how thick it is…)

So on the one hand, we have a type of fog that might appear to be higher up, with a tendency to descend towards the ground, versus one that starts at the ground and then rises up. This distinction came to me based on a discussion with Olea Sensor Networks during the June Sensors Expo. (They came up in my prior discussion on interoperability.)

They write custom analytics code for IoT devices. In the classic IoT model, such analytics would be performed in the Cloud – with perhaps some offloading into a local machine. This descent of analytics from on high might resemble the San Francisco marine-layer type of fog, where it mostly seems like clouds until it descends.

But Olea noted that they mostly don’t see analytics happening in the Cloud – at least not so far. The analytics they write execute on the edge node devices themselves – and perhaps in other local servers and gateways. But definitely on the local side of things, not the Cloud. So here the fog is rising from the ground up.

Fog_drawing.png 

Of course, as I’ve noted before, we’re in early stages of IoT build-out, with many folks struggling simply to make their phones work as remote controls – never mind the analytics. So this could be a transitory phase. But where you place the analytics has obvious implications for the resources needed on your edge-node device. Which has implications for cost.

What this also suggests is that current analytics functions are relying solely on data from the one device or perhaps from a few local devices that have access to the same server or gateway. Which probably also reflects the youth of the IoT.

At the point when more architects take advantage of data available only through the internet – things like social media feeds, perhaps map feeds, etc. – and work them into the analytics, then the Cloud may be a better place to bring all of that together. Likewise when combining data from edge nodes that are not collocated.

At which point, some tornado will come along and suck it all up into the Cloud.

 

[Editors note: Updated to correct company name from Olea Sensors to Olea Sensor Networks.]

Leave a Reply

featured blogs
Jul 25, 2021
https://youtu.be/cwT7KL4iShY Made on "a tropical beach" Monday: Aerospace and Defense Systems Day...and DAU Tuesday: 75 Years of the Microprocessor Wednesday: CadenceLIVE Cloud Panel... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Jul 24, 2021
Many modern humans have 2% Neanderthal DNA in our genomes. The combination of these DNA snippets is like having the ghost of a Neanderthal in our midst....
Jul 23, 2021
Synopsys co-CEO Aart de Geus explains how AI has become an important chip design tool as semiconductor companies continue to innovate in the SysMoore Era. The post Entering the SysMoore Era: Synopsys Co-CEO Aart de Geus on the Need for AI-Designed Chips appeared first on Fro...
Jul 9, 2021
Do you have questions about using the Linux OS with FPGAs? Intel is holding another 'Ask an Expert' session and the topic is 'Using Linux with Intel® SoC FPGAs.' Come and ask our experts about the various Linux OS options available to use with the integrated Arm Cortex proc...

featured video

Breakthrough FPGA news from Intel

Sponsored by Intel

As part of the numerous portfolio announcements associated with the launch of the 3rd Gen Intel® Xeon® Scalable processor, Intel also disclosed some breakthrough FPGA news: Intel® Agilex™ FPGAs now deliver industry-leading power efficiency and performance.

Click here for more information about Intel® Agilex™ FPGAs.

featured paper

Intel® Agilex™ FPGAs target IPUs, SmartNICs, and 5G Networks White Paper

Sponsored by Intel

Security challenges in the form of cyberattacks and data breaches loom ever larger as attacks on high-speed networks multiply. Massive amounts of data are at risk but so are physical resources, including critical physical infrastructure. Cryptography and authentication represent potent countermeasures. The latest members of the Intel® Agilex™ FPGA and SoC FPGA families feature hardened crypto blocks paired with MACsec soft IP to help mitigate the risks and limit the effects of these cyberattacks.

Click to read more

featured chalk talk

Vibration Sensing with LoRaWAN

Sponsored by Mouser Electronics and Advantech

Vibration sensing is an integral part of today’s connected industrial designs but Bluetooth, WiFi, and Zigbee may not be the best solution for this kind of sensing in an industrial setting. In this episode of Chalk Talk, Amelia Dalton chats with Andrew Lund about LoRaWAN for vibration sensing. They investigate why LoRaWAN is perfect for industrial vibration sensing, the role that standards play in these kinds of systems, and why 3 axis detection and real-time monitoring can make all the difference in your next industrial design.

Click here for more information about Advantech WISE-2410 LoRaWAN Wireless Sensor