editor's blog
Subscribe Now

Fairchild Debuts MEMS

A new inertial measurement unit (IMU), the FIS1100, was announced by Fairchild, and it gives us a couple things to talk about.

First, well… Fairchild. I remember when I started in the industry [kids roll their eyes, “Oh, there goes grampa on one of his stories again”], you’d have these genealogy charts showed how various companies evolved from prior companies. And one of the very few root companies was Fairchild. Anyone who had any time in the industry had, at one point or another, worked at Fairchild.

And then, well, forgive my saying it, but they kinda just disappeared from view.

Well, they’ve now announced their first MEMS product. It’s a six-axis IMU with inputs for an external magnetometer to give nine-axis results. This is more than just attaching another sensor to a bus, since the IMU internals have their own sensor fusion (the AttitudeEngine) for generating quaternion results. They also have higher-level sensor fusion libraries (like body tracking) for execution on a host (those libraries sold separately).

 IMU_architecture.png

(Image courtesy Fairchild)

And that leads to one of their claimed differentiators. Most IMU vendors specify a level of accuracy for their basic acceleration (linear and rotational) results. Fairchild is specifying the accuracy of their full orientation output, after the calculations. They claim to be the only ones to do that. They specify ±3° for pitch and roll and ±5° for yaw.

They also claim that their algorithms are self-correcting with respect to offset changes (but not drift). And the algorithms leverage human body motion models from Xsens, whom they acquired (and from whom also come many of the body tracking algorithms), allowing enough accuracy to run navigation without GPS input for 60-90 seconds before it gets too far out of whack. (I know, that doesn’t sound that long, but it’s a lifetime in the gyro world, where a few seconds can sometimes be all it takes…)

Other than the fact that we like high accuracy, a primary beneficiary of this approach is power.  When calculations are done externally, the sensor data must be sampled frequently for accuracy. With this part, because the calculation is done externally, the output data rate can be slower – saving power. The calculation itself is in the mA-to-10s-of-mA range on a non-aggressive silicon process node with low leakage.

Power_comparison.jpg 

(Image courtesy Fairchild)

The other trick they’ve managed is dual vacuum. As we discussed when covering Teledyne-DALSA’s MIDIS process, accelerometers like some damping – meaning they need some air in the cavity. Gyroscopes, meanwhile, like a high vacuum for best quality. So the accelerometer and gyro chambers have different vacuum levels, with the gyro chamber including a getter to maintain the low vacuum.

They’re also touting through-silicon vias (TSVs) for a smaller footprint, but they’re not using that yet; they’ve put in place a pathway to TSVs. For now, they’re still using wire bonding.

You can find more info in their announcement.

Leave a Reply

featured blogs
May 7, 2021
In one of our Knowledge Booster Blogs a few months ago we introduced you to some tips and tricks for the optimal use of Virtuoso ADE Product Suite with our analog IC design videos . W e hope you... [[ Click on the title to access the full blog on the Cadence Community site. ...
May 7, 2021
Enough of the letter “P” already. Message recieved. In any case, modeling and simulating next-gen 224 Gbps signal channels poses many challenges. Design engineers must optimize the entire signal path, not just a specific component. The signal path includes transce...
May 6, 2021
Learn how correct-by-construction coding enables a more productive chip design process, as new code review tools address bugs early in the design process. The post Find Bugs Earlier Via On-the-Fly Code Checking for Productive Chip Design and Verification appeared first on Fr...
May 4, 2021
What a difference a year can make! Oh, we're not referring to that virus that… The post Realize Live + U2U: Side by Side appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

Optimizing an OpenCL AI Kernel for the data center using Silexica’s SLX FPGA

Sponsored by Silexica

AI applications are increasingly contributing to FPGAs being used as co-processors in data centers. Silexica's newest application note shows how SLX FPGA accelerates an AI-related face detection design example, leveraging the bottom-up flow of Xilinx’s Vitis 2020.2 and Alveo U280 accelerator card.

Click to read

featured chalk talk

TI Robotics System Learning Kit

Sponsored by Mouser Electronics and Texas Instruments

Robotics projects can get complicated quickly, and finding a set of components, controllers, networking, and software that plays nicely together is a real headache. In this episode of Chalk Talk, Amelia Dalton chats with Mark Easley of Texas Instruments about the TI-RSLK Robotics Kit, which will get you up and running on your next robotics project in no time.

Click here for more information about the Texas Instruments TIRSLK-EVM Robotics System Lab Kit