editor's blog
Subscribe Now

Motion for User Interfaces

precog-no-back-w-clouds.pngWe’ve looked before at ways of controlling machines with just your hands in the air, like you just don’t care. No touchy-feely, no mouse. Just jazz hands.

So at first, when I saw a demo of what we’re going to talk about today, I thought, “OK… this looks kinda like what I was seeing demonstrated a couple years ago by companies like eyesight and PointGrab.” And yet it also had a flavor of what I’d seen with Movea and Hillcrest, except that their technologies involved remote controls doing what just hands were doing in this case.

But what I was seeing wasn’t either of those technologies at work. Making it more confusing yet, this isn’t about a particular sensing technique – optical, touch, whatever. And yet it is about motion and location. While the announced technology may be brand new, you would probably have to use it to sense the difference. I was watching over a screen, so I frankly had to ask a lot of questions to figure out why this wasn’t just another gesture recognition announcement a few years after all the other ones.

I’m talking about Quantum Interface’s new interface called “Qi*.” It’s a way of taking location information and using changes to model motion – and, in particular, to predict where that motion is going and then turn that into information that a user interface can use. The result is, they say, smoother and faster navigation through user interfaces of any kind. Because of the prediction, you don’t have to “complete” motions as much; a little move in a direction will get you where you want to go faster than if you had to, say, track your hand in front of you.

This notion of only location as an input doesn’t involve any gestures. This is not about specifically identifying a gesture – whether static in your hand shape or a motion pattern that a user has to learn. It’s simply about, say, moving your hand or putting a finger on a surface and letting a well-constructed interface make the next movement obvious. Under the hood, the motion is turned into commands: this is specifically the part Qi does do.

It’s often about navigating menus; you move toward a menu that pops open, and then you settle on (or towards) an item and push your finger towards the screen and it takes you to a next-level menu, and so forth. All more quickly and smoothly than older approaches.

But here’s another subtle part: this is a mid-layer piece of technology. It lives above hardware – it will take location information from any system that can provide it, whether touch or optical (gesture or eye tracking or…) or whatever. It improves with multiple location sensors providing inputs.

It’s also not built into any specific user interface (UI): designers of interfaces can tap the information that Qi provides to drive the interface. Quantum Interface has a fair bit of experience using Qi to build UIs, so they do work with their partners in that realm, but that’s about using Qi; it isn’t Qi itself.

This middleness also makes it system-agnostic: you can create a consistent interface for different app platforms – say, phone, watch, and tablet – and tweak only for the details and resources available on that platform. Somewhat like skinning.

Not sure if I’ve said more about what Qi isn’t than what it is, but both are important since the nuances of what’s new are, well, nuanced. You can find more in their announcement.

 

 

*Regrettably, even given China’s large electronics footprint, where they would pronounce that “chee,” and given the wireless power technology Qi, pronounced “chee,” this is not pronounced “chee”: according to the press release, it’s pronounced like its initials, QI (“cue eye”), even though they opted to make the I lower case…

 

Image courtesy Quantum Interface

Leave a Reply

featured blogs
Jul 5, 2022
The 30th edition of SMM , the leading international maritime trade fair, is coming soon. The world of shipbuilders, naval architects, offshore experts and maritime suppliers will be gathering in... ...
Jul 5, 2022
By Editorial Team The post Q&A with Luca Amaru, Logic Synthesis Guru and DAC Under-40 Innovators Honoree appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys 112G Ethernet IP Interoperating with Optical Components & Equalizing E-O-E Link

Sponsored by Synopsys

This OFC 2022 demo features the Synopsys 112G Ethernet IP directly equalizing electrical-optical-electrical (E-O-E) channel and supporting retimer-free CEI-112G linear drive for low-power applications.

Learn More

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

MOTIX™ Motor Control Solutions

Sponsored by Mouser Electronics and Infineon

Today’s complex automotive designs require a wide range of motor control and system ICs to deliver the features that customers demand. In this episode of Chalk Talk, Michael Williams from Infineon joins me to explore how Infineon’s MOTIX™ motor control solutions can help simplify your next automotive design. We take a closer look at the MOTIX™ Embedded power system on chip for motor control, the benefits that the MOTIX™ Embedded Power IC can bring to your next design, and how you can get started with your next motor control design with Infineon’s MOTIX™ motor control solutions.

Click here for more information about Infineon Technologies TLE986x 2-Phase Motor/Relay Driver ICs