editor's blog
Subscribe Now

A Hundred Billion Antenna Reconfigurations

Antenna_image.jpgCavendish Kinetics recently made an announcement regarding their ongoing reliability testing for their MEMS-based antenna-tuning technology.

We’ve talked about this tuning concept before (albeit with a different name); the short version is that, with all of the different bands that cell phones need to access, it becomes difficult to optimize the antenna for all of them in the limited space available. So the idea is that you have a capacitor array switched by MEMS elements, and you can then change up your filter with each band to optimize accordingly.

We also looked in more depth at Cavendish Kinetics’ particular approach before, including a description of work they’ve done to limit the range of switching capacitor plates to keep them from over-traveling or slamming too hard against stops.

But, such assurances aside, the question phone makers have remains: how reliable are those MEMS elements? How many times can you switch them before they fail?

Well, according to Cavendish Kinetics, a lot. Like, 100 billion cycles and counting.

And who needs that many cycles? Well, no one, actually, according to them. But, hey, when you’re on a roll, might as well keep it going to put any lingering doubts to rest.

In my mind, I make some comparison to a gyroscope, which has to be in constant motion. Where there is literally a mechanical member moving (as opposed to techniques involving internal resonances), you can add up those movements pretty quickly. Billions aren’t hard to attain. Even if the frequency was a slow 1 kHz, you’d hit a hundred billion cycles in just over 3 years.

But here’s the difference: with the capacitor array, the elements move only when you change configuration. While in use in a particular configuration, the switches are static. If you changed configurations every second, then in three years you’d get roughly (just under) a billion switching events. Which means it would take running the system that aggressively for on the order of 300 years to get to a hundred billion cycles.

I’m thinking the battery would probably wear out first. (And it suggests that their test runs somewhat faster than 1 Hz…)

You can read more about this in their announcement.

Leave a Reply

featured blogs
Dec 1, 2022
Raspberry Pi are known for providing lost-cost computing around the world. Their computers have been used by schools, small businesses, and even government call centers. One of their missions is to educate children about computers and to help them realize their potential thro...
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Unique AMS Emulation Technology

Sponsored by Synopsys

Learn about Synopsys' collaboration with DARPA and other partners to develop a one-of-a-kind, high-performance AMS silicon verification capability. Please watch the video interview or read it online.

Read the interview online:

featured paper

How SHP in plastic packaging addresses 3 key space application design challenges

Sponsored by Texas Instruments

TI’s SHP space-qualification level provides higher thermal efficiency, a smaller footprint and increased bandwidth compared to traditional ceramic packaging. The common package and pinout between the industrial- and space-grade versions enable you to get the newest technologies into your space hardware designs as soon as the commercial-grade device is sampling, because all prototyping work on the commercial product translates directly to a drop-in space-qualified SHP product.

Click to read more

featured chalk talk

Solving Design Challenges Using TI's Code Free Sensorless BLDC Motor Drivers

Sponsored by Mouser Electronics and Texas Instruments

Designing systems with Brushless DC motors can present us with a variety of difficult design challenges including motor deceleration, reliable motor startup and hardware complexity. In this episode of Chalk Talk, Vishnu Balaraj from Texas Instruments and Amelia Dalton investigate two new solutions for BLDC motor design that are code free, sensorless and easy to use. They review the features of the MCF8316A and MCT8316A motor drivers and examine how each of these solutions can make your next BLDC design easier than ever before.

Click here for more information about Texas Instruments MCF8361A Sensorless FOC 3-Phase BLDC Driver