editor's blog
Subscribe Now

A Hundred Billion Antenna Reconfigurations

Antenna_image.jpgCavendish Kinetics recently made an announcement regarding their ongoing reliability testing for their MEMS-based antenna-tuning technology.

We’ve talked about this tuning concept before (albeit with a different name); the short version is that, with all of the different bands that cell phones need to access, it becomes difficult to optimize the antenna for all of them in the limited space available. So the idea is that you have a capacitor array switched by MEMS elements, and you can then change up your filter with each band to optimize accordingly.

We also looked in more depth at Cavendish Kinetics’ particular approach before, including a description of work they’ve done to limit the range of switching capacitor plates to keep them from over-traveling or slamming too hard against stops.

But, such assurances aside, the question phone makers have remains: how reliable are those MEMS elements? How many times can you switch them before they fail?

Well, according to Cavendish Kinetics, a lot. Like, 100 billion cycles and counting.

And who needs that many cycles? Well, no one, actually, according to them. But, hey, when you’re on a roll, might as well keep it going to put any lingering doubts to rest.

In my mind, I make some comparison to a gyroscope, which has to be in constant motion. Where there is literally a mechanical member moving (as opposed to techniques involving internal resonances), you can add up those movements pretty quickly. Billions aren’t hard to attain. Even if the frequency was a slow 1 kHz, you’d hit a hundred billion cycles in just over 3 years.

But here’s the difference: with the capacitor array, the elements move only when you change configuration. While in use in a particular configuration, the switches are static. If you changed configurations every second, then in three years you’d get roughly (just under) a billion switching events. Which means it would take running the system that aggressively for on the order of 300 years to get to a hundred billion cycles.

I’m thinking the battery would probably wear out first. (And it suggests that their test runs somewhat faster than 1 Hz…)

You can read more about this in their announcement.

Leave a Reply

featured blogs
Nov 14, 2019
In addition to playing retro games, THEC64 allows you to write your own programs in C64 or VIC 20 BASIC....
Nov 14, 2019
The Cadence Academic Network hosted an Academic Speaker Series event, in collaboration with the Shanghai Site Technical Talk series, in Cadence Shanghai Office. The talk attracted more than 150... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Nov 14, 2019
Scientists, researchers, and data analysts from academia, industry and government agencies will be center stage at SC19 next week in Denver. SC19 is the International Conference for High Performance Computing, Networking, Storage, and Analysis. Next-generation high-performanc...
Nov 13, 2019
By Elven Huang – Mentor, A Siemens Business SRAM debugging at advanced nodes is challenging. With pattern matching and similarity checking, Calibre tools enable designers to more quickly and precisely locate SRAM modification errors and determine the correct fix. Static...
Nov 8, 2019
[From the last episode: we looked at the differences between computing at the edge and in the cloud.] We'€™ve looked at the differences between MCUs and SoCs, but the one major thing that they have in common is that they have a CPU. Now'€¦ anyone can define their own CPU ...