editor's blog
Subscribe Now

What Does a 5nm Transistor Look Like? I

Synopsys and Imec recently announced that they’d be collaborating on TCAD activities for the 5nm node.

Yup. 5nm. You can count ‘em on one hand.

We get to see lots of ideas on how things might happen in the future, but once you start defining a specific node, well, it’s time to get specific about what that node’s gonna look like. So I had a quick conversation with Imec’s Aaron Thean on what the notable changes would be at that node.

Because, unlike the old days, when each new node made things smaller, perhaps adding a new technique or tweak here and there to help with the shrinkage, these days it seems that, every couple nodes, something big has to change.

Like going from planar transistors to FinFETs. Or introducing double-patterning. And for all that work, it only buys you a couple nodes – you don’t get to reap the reward for the next 20 years. No time to relax; once you’ve gotten the latest major change completed, time to plan the next one.

While, presumably, each node has its share of evolutionary refinements from the prior node, I wanted to zero in on the big changes. One potentially big change that perhaps isn’t so big after all is EUV, but at 5nm, they’ll still need double-patterning – even with EUV. So hopefully EUV won’t be new at that point – what a drag to have a new litho technology that can free us from double-patterning, only to have it delayed to the point where it also needs double-patterning. Doh!

So that’s not the big one. I hope. The big change is likely to be transistor orientation – again. He sees FinFETs living on down through the 7nm node, but below that, routing challenges are finally going to be too great. At 7 nm, the channel will likely be nanowires instead of a fin, but it will still be horizontal. At the 5nm node, they’re looking at flipping that nanowire up to make it vertical.

In other words, they’ll grow a “forest” of these – well, what I call “pins” – and create transistors out of them. I’ve referred to these in the past as “pinFETs.” Imec refers to them as “VFETs.”

By standing the channel up, you obviously reduce the transistor footprint dramatically. This frees up more routing room. But there’s also another big change: rather than the channel being contacted on the left and right, it’s now contacted on the top and bottom. That messes up the old convenient front-end and back-end distinction. Instead of all the interconnect going on top of the transistors, now the channel will reside between two layers of interconnect. So some of the interconnect will go down before the transistor is built.

They’ve done some trial layouts and have found a rather significant reduction in area by using such a transistor, as exemplified by the NAND gate below.

5-nm_image.png

Image courtesy Imec

And when will all of this be coming to a fab near you? He sees 7nm risk starts in the 2018 timeframe; 5nm will lag that by only a couple years: 2020.

Oh, and in case you’re reserving time in your calendar, 3-4nm risk starts are anticipated in the 2022-24 range.

I can hardly wait.

Leave a Reply

featured blogs
May 14, 2021
Another Friday, another week chock full of CFD, CAE, and CAD news. This week features a topic near and dear to my heart involving death of the rainbow color map for displaying simulation results.... [[ Click on the title to access the full blog on the Cadence Community site....
May 13, 2021
Samtec will attend the PCI-SIG Virtual Developers Conference on Tuesday, May 25th through Wednesday, May 26th, 2021. This is a free event for the 800+ member companies that develop and bring to market new products utilizing PCI Express technology. Attendee Registration is sti...
May 13, 2021
Our new IC design tool, PrimeSim Continuum, enables the next generation of hyper-convergent IC designs. Learn more from eeNews, Electronic Design & EE Times. The post Synopsys Makes Headlines with PrimeSim Continuum, an Innovative Circuit Simulation Solution appeared fi...
May 13, 2021
By Calibre Design Staff Prior to the availability of extreme ultraviolet (EUV) lithography, multi-patterning provided… The post A SAMPle of what you need to know about SAMP technology appeared first on Design with Calibre....

featured video

Industry’s First USB4 Silicon Success

Sponsored by Synopsys

USB4 offers up to 40Gbps speeds for incredibly fast connections. Join Synopsys to see the first demonstration of USB4 IP in silicon, along with real TX eyes for DesignWare USB4, DisplayPort, and USB 3.x IP.

Click here for more information about DesignWare USB4 IP

featured paper

Four key design considerations when adding energy storage to solar power grids

Sponsored by Texas Instruments

Bidirectional power conversion, higher voltage batteries, current and voltage sensing, and a sleek storage system design are top considerations when adding energy storage to solar power grids. Read the latest whitepaper from Texas Instruments to unleash the power of storage-ready solar power grids.

Click to download whitepaper

featured chalk talk

Maxim's Ultra-High CMTI Isolated Gate Drivers

Sponsored by Mouser Electronics and Maxim Integrated

Recent advances in wide-bandgap materials such as silicon carbide and gallium nitride are transforming gate driver technology, bringing higher power efficiency and a host of other follow-on benefits. In this episode of Chalk Talk, Amelia Dalton chats with Suravi Karmacharya of Maxim Integrated about Maxim’s MAX22700-MAX22702 family of single-channel isolated gate drivers.

Click here for more information about Maxim Integrated MAX22700–MAX22702 Isolated Gate Drivers