editor's blog
Subscribe Now

IoT Standards: a oneM2M Follow-UP

A couple months ago I did a survey of Internet of Things (IoT) standards – or, more accurately, activities moving in the direction of standards, since it’s kind of early days yet.

And in it, I was a bit harsh with one standard… oneM2M. I found it dense and somewhat hard to penetrate, with language that didn’t seem clear or well-explained. The status at the time – and currently (for a bit longer) was as a candidate release, taking input.

To their credit, they accepted my cantankerous grumblings as input. I had a conversation with their Work Programme Management Ad-Hoc Group Chairman Nicolas Damour, at his suggestion, and we talked about some of the specific questions I had raised in my coverage. The general take-away was that the language could be made a bit more expansive for readers not from narrow domains.

Doing this can actually be tricky, since standards tend to have two kinds of content:

  • “Normative” content: this is the standard itself, the rules. It says what you “must” and “will” and ‘”shall” and “may” do. Changes to this must be well thought out and voted on. You can’t make changes willy-nilly.
  • “Informative” content: this is background material intended to give context or examples or perhaps even discuss the thinking that went into the standard: why was one approach approved over another? It’s much easier to make changes here. And if there’s any confusion between what the informative and normative sections say? The normative language always trumps.

A glossary is one good example of informative content, and we agreed that it was a reasonable place to make some clarifications. There might even be room for some glosses concerning how some tough decisions were arrived at. Overall, it was a productive conversation – showing a flexibility that’s not always a hallmark of standards organizations. (After several years of hard-fought work, it’s understandable that a group might resist a bit when outsiders propose last-minute changes… I didn’t perceive this during our talk.)

There were two specific things that I raised in my coverage.

  • One was the missing definition of a “reference point.” It turns out that, for people in the telecom world, this is a familiar term, codified by the ITU. It’s what the rest of us might call an “interface.” Problem is, the word “interface” means a lot of different things, so in ITU-land, it refers to an API or a specific physical interface. A reference point indicates an interface between systems, but in a more generic way, and one that could admit multiple protocols. Perhaps “boundary” is a better word than “interface.”
  • I questioned the definitions of “field” vs. “infrastructure” domains. In retrospect, this seems clearer: the field refers to deployed devices, and infrastructure means the Cloud or servers. The reason this seems clear now is because I’ve been specifically thinking about that with respect to “IoT Ring Theory.” Before that, it wasn’t so clear. To me, anyway.

They’re taking input through the end of the year, so you still have time to review and make suggestions. You can find the latest candidate release here (via FTP).

 

Note: there’s a page on the website with an earlier release that says that comments had to be in by Nov. 1, not by the end of the year… but I checked in, and that was for an earlier round of comments. You can still provide input. There’s also an explanatory webcast here.  

Leave a Reply

featured blogs
Apr 14, 2021
Hybrid Cloud architecture enables innovation in AI chip design; learn how our partnership with IBM combines the best in EDA & HPC to improve AI performance. The post Synopsys and IBM Research: Driving Real Progress in Large-Scale AI Silicon and Implementing a Hybrid Clou...
Apr 13, 2021
The human brain is very good at understanding the world around us.  An everyday example can be found when driving a car.  An experienced driver will be able to judge how large their car is, and how close they can approach an obstacle.  The driver does not need ...
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

featured chalk talk

Building Your IoT Toolbox

Sponsored by Mouser Electronics and Digi

December 17, 2020 - IoT design is a complex task, involving numerous disciplines and domains - including embedded design, software, networking, security, manufacturability, and the list goes on and on. Mastering all those moving parts is a daunting challenge for design teams. In this episode of Chalk Talk, Amelia Dalton chats with Andy Reiter of Digi International about development, deployment, manufacturing, and management tools for IoT development that could help get your next design out the door.

Click here for more information about DIGI XBee® Tools