editor's blog
Subscribe Now

Old-School Analog Outputs

Today we looked at the role of Freescale’s new FXLN83xxQ accelerometer for analyzing vibrations. But one feature of the accelerometer had me cocking an eyebrow: analog outputs.

We’ve covered a lot about sensors here before, and in the huge majority of the cases, a sensor consists of a MEMS (or other) sensing element, an ASIC to clean up and digitize the signal, and then a series of registers where all the relevant data gets placed.

An outside entity, like a sensor hub, can then read those registers over a bus connection – typically I2C or SPI. What could be simpler?

Well, I guess an analog output could be simpler: you eliminate all of that messy digital stuff. But it seems to me that, running an analog signal halfway across town to get it to the analog inputs of a microcontroller (aka MCU, or whatever hub is used) would run the risk of seriously degrading the analog value in a way that wouldn’t happen with a digital signal.

XL_schematic_red.jpg

 

(Click to enlarge)

Image courtesy Freescale.

I asked Freescale about this, and they justify it based on the wide variety of digital interfaces in use, in particular in industrial settings. Heck, they say that even CAN bus is leaving the confines of vehicles and moving into other applications.

Freescale makes lots of microcontrollers. This variety of MCUs partly reflects the diversity of interfaces they may talk to: Rather than having one large unit with all possible interfaces, they offer different devices. And yes, they’re assuming (or at least hoping) that you’ll be using their MCU.

So the idea goes thusly: first off, you simply don’t run the analog signals halfway across town. In these applications, an MCU is likely to be right nearby. (If not, then you want to move it so that it is nearby.) The MCU you choose will then reflect whatever bus you’re using, and that’s where you go digital. They prefer this, obviously, to having to have a bunch of different versions of the sensor to suit the various digital protocols.

There’s one other convenient thing about digital registers, however: they’re good at storing values while the rest of the system goes to sleep for a while to reduce power. Well, apparently these analog outputs can manage the same trick. The internal electronics shut down between samples, but the output is held between samples. This decouples the rate at which the MCU samples the analog outputs from the rate at which the sensor samples the system and allows power as low as 200 µA when running.

That’s how they see it; if you see it differently, then your comments are encouraged below.

Leave a Reply

featured blogs
Oct 6, 2022
The days of 'throwing it over the wall' are over. Heterogeneous integration is ushering in a new era of silicon chip design with collaboration at its core'”one that lives or dies on seamless interaction between your analog and digital IC and package design teams. Heterogeneo...
Oct 4, 2022
We share 6 key advantages of cloud-based IC hardware design tools, including enhanced scalability, security, and access to AI-enabled EDA tools. The post 6 Reasons to Leverage IC Hardware Development in the Cloud appeared first on From Silicon To Software....
Sep 30, 2022
When I wrote my book 'Bebop to the Boolean Boogie,' it was certainly not my intention to lead 6-year-old boys astray....

featured video

PCIe Gen5 x16 Running on the Achronix VectorPath Accelerator Card

Sponsored by Achronix

In this demo, Achronix engineers show the VectorPath Accelerator Card successfully linking up to a PCIe Gen5 x16 host and write data to and read data from GDDR6 memory. The VectorPath accelerator card featuring the Speedster7t FPGA is one of the first FPGAs that can natively support this interface within its PCIe subsystem. Speedster7t FPGAs offer a revolutionary new architecture that Achronix developed to address the highest performance data acceleration challenges.

Click here for more information about the VectorPath Accelerator Card

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Energy Storage: The Key to Sector Coupling

Sponsored by Mouser Electronics and Phoenix Contact

Climate change is making better energy storage more important than ever before. In this episode of Chalk Talk, Dr. Rüdiger Meyer from Phoenix Contact joins me to discuss the what, where and how of energy storage systems. We take a closer look at the structure and components included in typical energy storage systems and the role that connectors play in successful energy storage systems.

Click here for more information about Phoenix Contact Energy Storage Solutions