editor's blog
Subscribe Now

Anything But Moore’s Law

Novati_fab.jpg

Any new foundry would want to grow up to be a megalith like TSMC, right? Isn’t that how you prove you’ve “made it”? Well, not if you’re Novati. They’re a different sort of foundry, one you don’t hear about so often over the noise of the Big Guys.

Here’s the thing: when you’re in the foundry mainstream, you do one thing: you chase Moore’s Law and try to keep it going. You figure out what the masses want, and you trim everything extraneous away so that you can sate the masses in enormous volumes at competitive costs.

But what if you’re in the market for something that can’t be made using the techniques that suit the masses? That’s where smaller… ok, I’m going to use the dreaded word (investors: please cover your ears): niche players can find plenty of business, even if, by so doing, they can maybe achieve only kilolithic or decalithic status.

I met with them at Sensors Expo. Sensors are a typical opportunity for a more flexible fab, since they may use unusual techniques and materials, and each one may be slightly different, making it hard to put everyone onto one high-volume recipe.

Novati does CMOS and MEMS (particularly silicon microfluidics) – jointly and severally. When jointly, with both on the same wafer, they typically do MEMS-last, placing the MEMS elements above the CMOS circuitry. They can do this either by growing more silicon epitaxially over the CMOS or by stacking a separate wafer.

They also work on silicon photonics projects and 2.5D (silicon interposer) and 3D integration.

Most of what they do leverages a common set of equipment (largely for 200-mm wafers, with some 300-mm ones), but where the diversity really comes in is with materials. They can work with 60 different elements – far more than would be found in your average foundry.

Most foundries want to keep the number of elements they allow through the door to the absolute minimum. A new material, if not handled carefully, brings with it the risk of unexpected contamination with potentially calamitous results – something that’s just not worth messing with if you’re spinning oodles of wafers an hour.

But smaller guys need to be more flexible, and a willingness to work with more materials can be a boon to developers trying new ideas. Gold is the one element that Novati is particularly careful with: They segregate that in a separate room. For all the others, they study each one under consideration and develop specific protocols to ensure that the material goes only where they want it to. Which may be limited to some nanolayer a few atoms thick laid down by atomic layer deposition (ALD) on a wafer.

Once a project gets to production volumes, they can handle it to an extent, but they may also hand off to a partner that can handle higher volumes. Of course, if the volume production involves odd materials, then they’ll need to work with someone willing to handle that material.

As with any business, there’s always opportunity on the fringes of the mainstream. In this case, they’re entertaining many of those opportunities; they’re just being careful not to step on Moore’s toes.

You can find out more on their site.

 (Image courtesy Novati)

Leave a Reply

featured blogs
Apr 12, 2024
Like any software application or electronic gadget, software updates are crucial for Cadence OrCAD X and Allegro X applications as well. These software updates, often referred to as hotfixes, include support for new features and critical bug fixes made available to the users ...
Apr 11, 2024
See how Achronix used our physical verification tools to accelerate the SoC design and verification flow, boosting chip design productivity w/ cloud-based EDA.The post Achronix Achieves 5X Faster Physical Verification for Full SoC Within Budget with Synopsys Cloud appeared ...
Mar 30, 2024
Join me on a brief stream-of-consciousness tour to see what it's like to live inside (what I laughingly call) my mind...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured chalk talk

SLM Silicon.da Introduction
Sponsored by Synopsys
In this episode of Chalk Talk, Amelia Dalton and Guy Cortez from Synopsys investigate how Synopsys’ Silicon.da platform can increase engineering productivity and silicon efficiency while providing the tool scalability needed for today’s semiconductor designs. They also walk through the steps involved in a SLM workflow and examine how this open and extensible platform can help you avoid pitfalls in each step of your next IC design.
Dec 6, 2023
17,211 views