editor's blog
Subscribe Now

An Optical MEMS Reference Process

A while back Micralyne announced a MEMS reference process. There are a few of these running around: attempts to achieve – or at least grasp at – a standard process that can address a wide range of MEMS devices.

Most of Micralyne’s processes are confidential, per their customer relationships, in typical MEMS style. What they did here was to take a “neutral” improved version of what they do well and open it up. They’re not sure that customers will simply line up and use that process in high-volume production outright, but at the very least it’s a conversation starter and a way for them to show their capabilities without divulging secrets.

Micralyne’s strength is primarily optical MEMS: mirrors and comb drives and such. Those feature large in their process, but, in order to be a bit more general, they added some inertial devices, like a 2-axis (but not a 3-axis) accelerometer and a gyro, as well as some biomedical devices.

It’s a two-wafer process (plus handles); cavities are etched into the base wafer and the top wafer; the top wafer is inverted and fusion-bonded to the bottom wafer, after which the top-wafer handle is removed. From the top, release is performed and then metal is laid down. This metal step pertains in particularly to giving mirrors a nice reflective surface.

As a complete aside, in the discussion of their optical capabilities, there was repeated mention of “hitless” functionality with respect to the mirrors. I actually had a hard time finding out what this meant, and a conversation with Micralyne helped clarify. For any of you who are, like me, not steeped in optical, this is a way of changing optical routing in an optical switch without interfering with other channels.

It’s actually a pretty simple concept. Below I show a scenario with various fibers being routed to various other fibers via the gold mirrors. In particular, fiber 3 routes to fiber 1 (moving bottom to top). Let’s say we want to reroute that so that fiber 3 now routes to fiber 6. If we just move the mirror across, then the light stream from fiber three will interfere with all of the other receiving channels as it scans across (which I’ve tried to illustrate on the right, with the stars indicating interference as the beam moves; at the particular moment shown, it’s made it as far as target fiber 4 on its way to 6).

Hitless_switching_1.png

So the hitless idea is that you simple tilt the mirror in the orthogonal direction first so that it’s no longer targeting the receiving fibers. You can then sweep it across to the new target; the light is now moving under the other beams and doesn’t interfere. Once over in the new position, you then bring the beam back up to its normal working position and the connection is made (with no disturbance to the others).

Hitless_switching_2.png

You can find more info in their release and whitepapers.

Leave a Reply

featured blogs
Apr 14, 2021
Hybrid Cloud architecture enables innovation in AI chip design; learn how our partnership with IBM combines the best in EDA & HPC to improve AI performance. The post Synopsys and IBM Research: Driving Real Progress in Large-Scale AI Silicon and Implementing a Hybrid Clou...
Apr 13, 2021
The human brain is very good at understanding the world around us.  An everyday example can be found when driving a car.  An experienced driver will be able to judge how large their car is, and how close they can approach an obstacle.  The driver does not need ...
Apr 13, 2021
If a picture is worth a thousand words, a video tells you the entire story. Cadence's subsystem SoC silicon for PCI Express (PCIe) 5.0 demo video shows you how we put together the latest... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Apr 12, 2021
The Semiconductor Ecosystem- It is the definition of '€œHigh Tech'€, but it isn'€™t just about… The post Calibre and the Semiconductor Ecosystem appeared first on Design with Calibre....

featured video

Meeting Cloud Data Bandwidth Requirements with HPC IP

Sponsored by Synopsys

As people continue to work remotely, demands on cloud data centers have never been higher. Chip designers for high-performance computing (HPC) SoCs are looking to new and innovative IP to meet their bandwidth, capacity, and security needs.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

Featured Chalk Talk

Intel NUC Elements

Sponsored by Mouser Electronics and Intel

Intel Next Unit of Computing (NUC) compute elements are small-form-factor barebone computer kits and components that are perfect for a wide variety of system designs. In this episode of Chalk Talk, Amelia Dalton chats with Kristin Brown of Intel System Product Group about pre-engineered solutions from Intel that can provide the appropriate level of computing power for your next design, with a minimal amount of development effort from your engineering team.

Click here for more information about Intel NUC 8 Compute Element (U-Series)