editor's blog
Subscribe Now

QuickLogic Goes Wearable

We’ve looked at QuickLogic’s sensor hub solution in quite some detail in the past. It’s programmable logic at its heart, but is sold as a function-specific part (as contrasted with Lattice, who sells a general-purpose low-power part into similar applications). QuickLogic recently announced a wearables offering, which got me wondering how different this was from their prior sensor hub offering.

After all, it’s really kind of the same thing, only for a very specific implementation: gadgets that are intended to be worn. Which are battery-powered and require the utmost in power-miserliness to be successful.

You may recall that QuickLogic’s approach is an engine implemented in their programmable fabric. They’ve then put together both a library of pre-written algorithms and a C-like language that allows implementation of custom algorithms; in both cases, the algorithms run on that engine. So the question here is, did the engine change for the wearable market, or is it just a change in the algorithms?

QL_arch.png

Image courtesy QuickLogic

I checked in, and they confirmed that the engine has not changed – it’s the same as for the general sensor hub. What they have done is focus the libraries on context and gesture algorithms most applicable to the wearables market.

Sometime back, we looked at how different sensor fusion guys approach the problem of figuring out where your phone is on you. A similar situation exists for wearables in terms both of classifying what the wearer is doing and the gadget’s relationship to the wearer. QuickLogic’s approach supports 6 different states (or contexts): walking, running, cycling, in-vehicle, on-person, and not-on-person.

They’ve also added two wearable-specific gestures for waking the device up either by tapping it or by rotating the wrist.

Critically, they do this with under 250 µW when active.

You can read more in their announcement.

Leave a Reply

featured blogs
Jul 5, 2022
The 30th edition of SMM , the leading international maritime trade fair, is coming soon. The world of shipbuilders, naval architects, offshore experts and maritime suppliers will be gathering in... ...
Jul 5, 2022
By Editorial Team The post Q&A with Luca Amaru, Logic Synthesis Guru and DAC Under-40 Innovators Honoree appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Multi-Vendor Extra Long Reach 112G SerDes Interoperability Between Synopsys and AMD

Sponsored by Synopsys

This OFC 2022 demo features Synopsys 112G Ethernet IP interoperating with AMD's 112G FPGA and 2.5m DAC, showcasing best TX and RX performance with auto negotiation and link training.

Learn More

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Hot-Swap and Power Protection -- Mouser Electronics and Analog Devices

Sponsored by Mouser Electronics and Analog Devices

When it comes to our always-on, critical systems we need to carefully consider power protection and maintainability. In this episode of Chalk Talk, Amelia Dalton and Dwight Larson investigate the issues that surround hot-plugging into an energized power supply, the best solutions to consider, what the different hot-swap circuit topologies look like for a variety of applications and why the MAX15090B/C with its innovative current foldback startup may be the best solution for your next design.

Click here for more information about Maxim Integrated MAX15090B/MAX15090C Hot Swap ICs