editor's blog
Subscribe Now

QuickLogic Goes Wearable

We’ve looked at QuickLogic’s sensor hub solution in quite some detail in the past. It’s programmable logic at its heart, but is sold as a function-specific part (as contrasted with Lattice, who sells a general-purpose low-power part into similar applications). QuickLogic recently announced a wearables offering, which got me wondering how different this was from their prior sensor hub offering.

After all, it’s really kind of the same thing, only for a very specific implementation: gadgets that are intended to be worn. Which are battery-powered and require the utmost in power-miserliness to be successful.

You may recall that QuickLogic’s approach is an engine implemented in their programmable fabric. They’ve then put together both a library of pre-written algorithms and a C-like language that allows implementation of custom algorithms; in both cases, the algorithms run on that engine. So the question here is, did the engine change for the wearable market, or is it just a change in the algorithms?

QL_arch.png

Image courtesy QuickLogic

I checked in, and they confirmed that the engine has not changed – it’s the same as for the general sensor hub. What they have done is focus the libraries on context and gesture algorithms most applicable to the wearables market.

Sometime back, we looked at how different sensor fusion guys approach the problem of figuring out where your phone is on you. A similar situation exists for wearables in terms both of classifying what the wearer is doing and the gadget’s relationship to the wearer. QuickLogic’s approach supports 6 different states (or contexts): walking, running, cycling, in-vehicle, on-person, and not-on-person.

They’ve also added two wearable-specific gestures for waking the device up either by tapping it or by rotating the wrist.

Critically, they do this with under 250 µW when active.

You can read more in their announcement.

Leave a Reply

featured blogs
Jan 21, 2021
'€œWhether we are based on carbon or on silicon makes no fundamental difference; we should each be treated with appropriate respect.'€ -- Arthur C. Clarke (2010: Odyssey Two)...
Jan 21, 2021
We have recently interviewed some of our EMEA team members to hear about their unique backgrounds and experiences shaping the future of technology with Cadence. For our second interview, we spoke... [[ Click on the title to access the full blog on the Cadence Community site....
Jan 20, 2021
Explore how EDA tools & proven IP accelerate the automotive design process and ensure compliance with Automotive Safety Integrity Levels & ISO requirements. The post How EDA Tools and IP Support Automotive Functional Safety Compliance appeared first on From Silicon...
Jan 19, 2021
I'€™ve been reading year-end and upcoming year lists about the future trends affecting technology and electronics. Topics run the gamut from expanding technologies like 5G, AI, electric vehicles, and various realities (XR, VR, MR), to external pressures like increased gover...

featured paper

Speeding Up Large-Scale EM Simulation of ICs Without Compromising Accuracy

Sponsored by Cadence Design Systems

With growing on-chip RF content, electromagnetic (EM) simulation of passives is critical — from selecting the right RF design candidates to detecting parasitic coupling. Being on-chip, accurate EM analysis requires a tie in to the process technology with process design kits (PDKs) and foundry-certified EM simulation technology. Anything short of that could compromise the RFIC’s functionality. Learn how to get the highest-in-class accuracy and 10X faster analysis.

Click here to download the whitepaper

featured chalk talk

ROHM Gate Drivers

Sponsored by Mouser Electronics and ROHM Semiconductor

Today’s rapid growth of power and motor control applications demands a fresh look at gate driver technology. Recent advances in gate drivers help designers hit new levels of efficiency and performance in their designs. In this episode of Chalk Talk, Amelia Dalton chats with Mitch Van Ochten of ROHM about the latest in isolated and non-isolated gate driver solutions.

Click here for more information about ROHM Semiconductor Automotive Gate Drivers