editor's blog
Subscribe Now

SiTime Adds Temperature Compensation

SiTime came out with a 32-kHz temperature-compensated MEMS oscillator a few weeks back, targeting the wearables market. 32 kHz is popular because dividing by an easy 215 gives a 1-second period. Looking through the story, there were a couple elements that bore clarification or investigation.

Let’s back up a year or so to when they announced their TempFlat technology. The basic concept is of a MEMS oscillator that, somehow, is naturally compensated against temperature variation without any circuitry required to do explicit compensation.

At the time, they said they could get to 100 ppb (that’s “billion”) uncompensated, and 5 ppb with compensation. (The “ppb” spec represents the complete deviation across the temperature range; a lower number means a flatter response.) This year, they announced their compensated version: They’re effectively taking a 50 ppm (million, not billion) uncompensated part and adding compensation to bring it down to 5 ppm. I was confused.

On its face, the compensation is a straightforward deal: take the temperature response of the bare oscillator and reverse it.

Figure.jpg

Image courtesy SiTime

But what about the “millions” vs. “billions” thing? Why are we compensating within the “millions” regime if they could get to ppb uncompensated?

Turns out, in the original TempFlat release, they were talking about where they think the TempFlat technology can eventually take them – not where their products are now. For now, they need to compensate to get to 5 ppm. In the future, they see doing 100 ppb without compensation, 5 ppb with compensation. That’s a 1000x improvement over today’s specs. Critically, from what they’ve seen published by their competition, they say that they don’t see their competitors being able to do this.

So, in short: ppmillions today, ppbillions later. These are the same guys, by the way, that have also implemented a lifetime warranty on their parts.

There was one other thing I was hoping I’d be able to write more about: how this whole TempFlat thing works. We looked at Sand 9’s and Silicon Labs’ approaches some time back; they both use layered materials with opposing temperature responses to flatten things out. So how does SiTime do it?

Alas, that will remain a mystery for the moment. They’re declining to detail the technology as a competitive defense thing. The less the competition knows…

You can read more about SiTime’s new TCXO in their announcement.

Leave a Reply

featured blogs
May 25, 2023
Register only once to get access to all Cadence on-demand webinars. Unstructured meshing can be automated for much of the mesh generation process, saving significant engineering time and cost. However, controlling numerical errors resulting from the discrete mesh requires ada...
May 24, 2023
Accelerate vision transformer models and convolutional neural networks for AI vision systems with the ARC NPX6 NPU IP, the best processor for edge AI devices. The post Designing Smarter Edge AI Devices with the Award-Winning Synopsys ARC NPX6 NPU IP appeared first on New Hor...
May 8, 2023
If you are planning on traveling to Turkey in the not-so-distant future, then I have a favor to ask....

featured video

Automate PCB P&R Tasks for Designs in Minutes

Sponsored by Cadence Design Systems

Discover how to get a dramatic reduction in design turnaround time by automating your placement, power plane generation, and critical net routing with Cadence® Allegro® X AI technology. Built on and accessed through the Allegro X Design Platform, Allegro X AI reduces P&R tasks from days to minutes with equivalent or higher quality compared with manually designed boards.

Click here for more information

featured contest

Join the AI Generated Open-Source Silicon Design Challenge

Sponsored by Efabless

Get your AI-generated design manufactured ($9,750 value)! Enter the E-fabless open-source silicon design challenge. Use generative AI to create Verilog from natural language prompts, then implement your design using the Efabless chipIgnite platform - including an SoC template (Caravel) providing rapid chip-level integration, and an open-source RTL-to-GDS digital design flow (OpenLane). The winner gets their design manufactured by eFabless. Hurry, though - deadline is June 2!

Click here to enter!

featured chalk talk

Energy Storage Systems
Increasing electric vehicle sales, decreasing battery sales, and a shift in energy consumption has made energy storage systems more important than ever before. In this episode of Chalk Talk, Amelia Dalton chats with Gijs Werner from Amphenol FCI Basics about the functions and components involved in commercial energy storage systems, residential energy storage systems and EV charging stations. They investigate the qualifications needed for connectors in energy storage systems and what kind of connectors Amphenol FCI Basics offers for your next energy storage system design.
Apr 3, 2023
7,004 views