editor's blog
Subscribe Now

Accelerometer Fingerprints

An interesting paper was published earlier this year by a team from University of Illinois at Urbana-Champaign, University of South Carolina, and Zhejiang University. In short, it says that the accelerometer in your phone could give you away even if you’ve locked all your privacy settings down tight.

The idea is based on the fact that each accelerometer is unique at the lowest level, having minor but detectable differences in waveform or harmonic content. To the extent that the characteristic resonance of an accelerometer can identify it uniquely (or nearly so), it acts as a signature.

This means that an app can “record” a phone’s accelerometer and then store it in the cloud for future reference. Some other app can also sample the accelerometer and send the sample to the Cloud, where a search engine can match the signature and identify the phone. (This is the way music is identified these days, so there is clearly precedent that the search aspect is doable.)

“Unique” may actually be an overstatement from a purely scientific standpoint. As they point out, they haven’t done enough of a statistical sample to prove uniqueness over the many millions of phones out there, and they don’t have some theoretical model to suggest uniqueness. But they measured 36 different time- and frequency-domain features in 80 accelerometers, 25 phones, and 2 tablets and came away pretty convinced that there is something to pay attention to here.

They discuss the possibility of “scrubbing” the measurements by adding white noise or filtering, but each of the things they tried was either ineffective or too effective (that is, it affected how an application operated).

To me, it seems like there’s an abstraction problem here. A phone has a raw accelerometer followed by a conditioning circuit and a digitizer. Eventually a value is placed in a register for retrieval by an application. In a perfect world, all distortions and anomalies would be “filtered” out by the conditioning and the digitization so that what lands in the register has been purged of errors – making all accelerometers look alike. That’s a pretty high bar to set, but you’d think that, even if not perfect, it would at least get rid of enough noise to make a uniqueness determination infeasible.

Then again, as they point out, (a) it took 36 features to get uniqueness, and (b) if you couldn’t quite get there using just the accelerometer, you could also bring the gyro (et al) into the picture – effectively adding more features to the signature. So any policy of “cleanup” prior to registering the final value would have to be applicable (and actually applied) strategically across a number of sensors. In other words, some fortuitous solution related to how accelerometers are built would be insufficient, since it couldn’t be used on a gyro as well.

The only other obvious solution would be policy-based. You could restrict low-level access, but that would rule out apps needing high precision readings. The OS could flag apps that need low-level access and ask permission, although presenting that request to a non-technical phone user could be a challenge. And the OS would have to actually check the program code to see if it does low-level access; relying on declarations wouldn’t work since the concern here is specifically about sneakware, whose authors are not likely to volunteer what they’re about.

I’m curious about your thoughts on this. Are there other solutions? Is this much ado about nothing? You can read much more detail in the original paper, and then share your reactions.

Leave a Reply

featured blogs
Sep 5, 2024
I just discovered why my wife sees our green watering can as being blue (and why she says I see our blue watering can as being green)...

featured paper

A game-changer for IP designers: design-stage verification

Sponsored by Siemens Digital Industries Software

In this new technical paper, you’ll gain valuable insights into how, by moving physical verification earlier in the IP design flow, you can locate and correct design errors sooner, reducing costs and getting complex designs to market faster. Dive into the challenges of hard, soft and custom IP creation, and learn how to run targeted, real-time or on-demand physical verification with precision, earlier in the layout process.

Read more

featured chalk talk

Exploring the Potential of 5G in Both Public and Private Networks – Advantech and Mouser
Sponsored by Mouser Electronics and Advantech
In this episode of Chalk Talk, Amelia Dalton and Andrew Chen from Advantech investigate how we can revolutionize connectivity with 5G in public and private networks. They explore the role that 5G plays in autonomous vehicles, smart traffic systems, and public safety infrastructure and the solutions that Advantech offers in this arena.
Apr 1, 2024
26,709 views