editor's blog
Subscribe Now

Wide-Ranging Approaches to Ranging

As I’ve mentioned before, there are constants at ISSCC (e.g., sessions on image processing and sensors) and then there are the circuits-of-the-month. Ranging seemed to be one of the latter, showing up in both image-processing and sensor sessions. So I thought I’d summarize some of the widely differing approaches to solving issues related to ranging for a variety of applications.

For those of you following along in the proceedings, these come from sessions 7 and 12.

Session 7.4 (Shizuoka University, Brookman Technology) offered a background-cancelling pixel that can determine the distance of an object using time-of-flight (ToF). As you may recall, ToF is more or less like light radar (LIDAR?) where the arrival of the reflection of a known emitted light gives you the distance.

There are four lateral gates in this pixel, directing charge from impinging light into one of three floating diffusion areas (the fourth gate simply discharges the pixel).

Background cancellation has historically been done by comparing adjacent frames, but quick motion can create strange artifacts. So at the beginning of the capture cycle for this work, the background is measured and stored in the first diffusion for subtraction. Then the emitter turns on and collection moves to the second diffusion. The reflection may also return during that time; when the emitter shuts off, then collection changes to the third diffusion. The difference between those two charge amounts gives the distance.

Session 7.5 (Shisuoka University) addresses the challenge of doing high-precision ranging for the purposes of, say, modeling an object. The problem is that, to get higher resolution, you ordinarily need to separate the light source from the imager by a wide angle. That’s hard to do in a small device. Such devices typically have resolution in the few-cm range, which isn’t much use for object modeling; this work achieved 0.3-mm resolution.

The keys were three:

  • They use an extremely short (< 1 ns) light pulse.
  • They used a drain-only modulator (DOM) – by eliminating the lateral pass gate, they get a faster response. The pixel itself can only accumulate or drain.
  • They capture all of the pixels at once, but the tight timing brings another issue: skew between pixels is no longer noise, but can screw up the measurement. So they implemented a column deskew circuit and procedure.

Microsoft weight in in Session 7.6 (they couldn’t help putting a flashy brand on their opening slide – something that you generally don’t see at ISSCC, but I guess the expert marketing guys from SEO Slack need something to prove their value, even if it meant being tasteless). This was an improved Kinect ranging system where the challenge is in accommodating both distant low-reflectivity (i.e., low-light) and close-in high-reflectivity (i.e., high-light) objects. Pretty much your classic dynamic range issue complicated by the distance thing.

They have decoupled the collection of charge in a floating diffusion and an “A or B” assignment that will be used to calculate the distance. They use A and B rows as inputs to a differential cell. A high-frequency clock alternates A and B activation during collection; this means that the assignment to A or B, determined by the clock, happens simultaneously with charge collection. The transfer to a floating diffusion can then happen afterwards, at a leisurely pace (to use their word).

They also implemented a common-mode reset to neutralize a bright ambient. And each pixel can set its gain and shutter time; this is how they accommodate the wide dynamic range.

Meanwhile, over in Session 12, folks are using other sensors for ranging. In Session 12.1 (UC Berkeley, UC Davis, Chirp Microsystems), they built a pMUT (piezoelectric micro-machined ultrasonic transducer) array to enable gesture recognition. Think of it as phased-array radar on a miniscule scale. They process the received signals by phase-shifting – basically, beamforming – in an attached FPGA.

Within the array, some pMUTs (think of them as ultrasonic pixels, sort of) are actuated to send a signal, others listen to receive the reflection, and some do both. They can decide which of these to do for optimization purposes on a given application.

They also want to sample at 16x the resonant frequency of the sensors to lower in-band quantization noise and simplify the cap sizing. (No relation to an unfortunate boating incident.) But that means they need to know the actual, not approximate, resonant frequency for a given device – natural variation has to be accommodated, as does response to changing environmental conditions like temperature.

To do this, they have a calibration step where they actuate the sensors and measure their ring-down, using the detected frequency to set the drive frequency of the actuator. This calibration isn’t done with each capture; it can be done once per second or minute, as conditions for a given application warrant.

As always, the details on these sessions are in the proceedings.

Leave a Reply

featured blogs
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Sep 17, 2021
Dear BoardSurfers, I want to unapologetically hijack the normal news and exciting feature information that you are accustomed to reading about in the world of PCB Design blogs to eagerly let you know... [[ Click on the title to access the full blog on the Cadence Community s...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Maxim Integrated is now part of Analog Devices

Sponsored by Maxim Integrated (now part of Analog Devices)

What if we didn’t wait around for the amazing inventions of tomorrow – and got busy creating them today?

See What If: analog.com/Maxim

featured paper

Choose a high CMTI gate driver that cuts your SiC switch dead-time

Sponsored by Maxim Integrated (now part of Analog Devices)

As GaN and SiC FETs begin to replace MOSFET and IGBT technologies in power switching applications, this Maxim paper discusses the key considerations when selecting an isolated gate driver. The paper explains the importance of CMTI and propagation delay skew and presents an isolated gate driver IC ideal for use with these new power transistors.

Click to read more

featured chalk talk

Build, Deploy and Manage Your FPGA-based IoT Edge Applications

Sponsored by Mouser Electronics and Intel

Designing cloud-connected applications with FPGAs can be a daunting engineering challenge. But, new platforms promise to simplify the process and make cloud-connected IoT design easier than ever. In this episode of Chalk Talk, Amelia Dalton chats with Tak Ikushima of Intel about how a collaboration between Microsoft and Intel is pushing innovation forward with a new FPGA Cloud Connectivity Kit.

Click here for more information about Terasic Technologies FPGA Cloud Connectivity Kit