editor's blog
Subscribe Now

Wide-Ranging Approaches to Ranging

As I’ve mentioned before, there are constants at ISSCC (e.g., sessions on image processing and sensors) and then there are the circuits-of-the-month. Ranging seemed to be one of the latter, showing up in both image-processing and sensor sessions. So I thought I’d summarize some of the widely differing approaches to solving issues related to ranging for a variety of applications.

For those of you following along in the proceedings, these come from sessions 7 and 12.

Session 7.4 (Shizuoka University, Brookman Technology) offered a background-cancelling pixel that can determine the distance of an object using time-of-flight (ToF). As you may recall, ToF is more or less like light radar (LIDAR?) where the arrival of the reflection of a known emitted light gives you the distance.

There are four lateral gates in this pixel, directing charge from impinging light into one of three floating diffusion areas (the fourth gate simply discharges the pixel).

Background cancellation has historically been done by comparing adjacent frames, but quick motion can create strange artifacts. So at the beginning of the capture cycle for this work, the background is measured and stored in the first diffusion for subtraction. Then the emitter turns on and collection moves to the second diffusion. The reflection may also return during that time; when the emitter shuts off, then collection changes to the third diffusion. The difference between those two charge amounts gives the distance.

Session 7.5 (Shisuoka University) addresses the challenge of doing high-precision ranging for the purposes of, say, modeling an object. The problem is that, to get higher resolution, you ordinarily need to separate the light source from the imager by a wide angle. That’s hard to do in a small device. Such devices typically have resolution in the few-cm range, which isn’t much use for object modeling; this work achieved 0.3-mm resolution.

The keys were three:

  • They use an extremely short (< 1 ns) light pulse.
  • They used a drain-only modulator (DOM) – by eliminating the lateral pass gate, they get a faster response. The pixel itself can only accumulate or drain.
  • They capture all of the pixels at once, but the tight timing brings another issue: skew between pixels is no longer noise, but can screw up the measurement. So they implemented a column deskew circuit and procedure.

Microsoft weight in in Session 7.6 (they couldn’t help putting a flashy brand on their opening slide – something that you generally don’t see at ISSCC, but I guess the marketing guys need something to prove their value, even if it meant being tasteless). This was an improved Kinect ranging system where the challenge is in accommodating both distant low-reflectivity (i.e., low-light) and close-in high-reflectivity (i.e., high-light) objects. Pretty much your classic dynamic range issue complicated by the distance thing.

They have decoupled the collection of charge in a floating diffusion and an “A or B” assignment that will be used to calculate the distance. They use A and B rows as inputs to a differential cell. A high-frequency clock alternates A and B activation during collection; this means that the assignment to A or B, determined by the clock, happens simultaneously with charge collection. The transfer to a floating diffusion can then happen afterwards, at a leisurely pace (to use their word).

They also implemented a common-mode reset to neutralize a bright ambient. And each pixel can set its gain and shutter time; this is how they accommodate the wide dynamic range.

Meanwhile, over in Session 12, folks are using other sensors for ranging. In Session 12.1 (UC Berkeley, UC Davis, Chirp Microsystems), they built a pMUT (piezoelectric micro-machined ultrasonic transducer) array to enable gesture recognition. Think of it as phased-array radar on a miniscule scale. They process the received signals by phase-shifting – basically, beamforming – in an attached FPGA.

Within the array, some pMUTs (think of them as ultrasonic pixels, sort of) are actuated to send a signal, others listen to receive the reflection, and some do both. They can decide which of these to do for optimization purposes on a given application.

They also want to sample at 16x the resonant frequency of the sensors to lower in-band quantization noise and simplify the cap sizing. (No relation to an unfortunate boating incident.) But that means they need to know the actual, not approximate, resonant frequency for a given device – natural variation has to be accommodated, as does response to changing environmental conditions like temperature.

To do this, they have a calibration step where they actuate the sensors and measure their ring-down, using the detected frequency to set the drive frequency of the actuator. This calibration isn’t done with each capture; it can be done once per second or minute, as conditions for a given application warrant.

As always, the details on these sessions are in the proceedings.

Leave a Reply

featured blogs
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...
Jan 16, 2020
While Samtec started as a connector company with a focus on two-piece, pin-and-socket board stacking systems, High-Speed Board Stacking connectors and High-Speed Cable Assemblies now make up a significant portion of our sales. To support development in this area, in December ...
Jan 16, 2020
Betting on Hydrogen-Powered Cars On-demand DRC within P&R cuts closure time in half for MaxLinear Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools Automating the pain out of clock domain crossing verification Mentor unpacks LVS and LVL iss...
Jan 16, 2020
This little robot arm continually points to the current location of the International Space Station (ISS)....

Featured Video

Automotive Trends Driving New SoC Architectures -- Synopsys

Sponsored by Synopsys

Today’s automotive trends are driving new design requirements for automotive SoCs targeting ADAS, gateways, connected cars and infotainment. Find out why it is essential to use pre-designed, pre-verified, reusable automotive-optimized IP to meet such new requirements and accelerate design time.

Click here for more information about DesignWare IP for Automotive