editor's blog
Subscribe Now

Ten years and rolling

Ten years ago today the Mars Rover Opportunity bounced its way on to the surface of Mars, at the start of a three month mission. In that time, as well as driving 24 miles, the little machine has added enormously to our understanding of the history of the planet.

And this is a huge endorsement of the team who put together the electronics. The development process started nearly twenty years ago, and by the time the mission launched most of the electronics used was, to put it kindly, mature. The central processor is a 32 bit Rad 6000 microprocessor, a radiation-hardened version of a Power PC that was launched in around 1965.

Just look around- how much of the electronics you own is ten years old and still functioning? What software are you using that ceased development around 15 years ago.  That is a little unfair since the software on Opportunity has undergone several upgrades.

That in itself is quite mind-boggling. When did you last do a major software upgrade and how easily did it go?

This week there was another space event that was a tribute to system designers. The Rosetta mission to investigate comet Churyumov-Gerasimenko woke up after 31 months in hibernation mode the latest stage in journey that started almost ten years ago.

So It is possible to create systems that last for years- you just have to work hard at it.

Leave a Reply

featured blogs
Aug 7, 2020
HPC. FinTech. Machine Learning. Network Acceleration. These and many other emerging applications are stressing data center networks. Data center architectures evolve to ensure optimal resource utilization and allocation. PECFF (PCIe® Enclosure Compatible Form Factor) was dev...
Aug 6, 2020
Would you believe that the clever Victorians had incredibly cunning 21-segment incandescent lamp-based displays as far back as 1898?...
Aug 6, 2020
Rigid-flex sounds like something that might be a Crossfit workout-of-the-day. But it is actually a way of doing electronic design for small form factors using flexible PCBs (typically along with some... [[ Click on the title to access the full blog on the Cadence Community s...
Jul 31, 2020
[From the last episode: We looked at the notion of sparsity and how it helps with the math.] We saw before that there are three main elements in a CNN: the convolution, the pooling, and the activation . Today we focus on activation . I'€™ll start by saying that the uses of ...

featured video

Product Update: DesignWare MIPI C-PHY/D-PHY IP

Sponsored by Synopsys

Get the latest update on Synopsys' DesignWare MIPI C-PHY/D-PHY IP solution and how the 24 Gbps total bandwidth can enable your camera, display, automotive, drone, and image sensor SoCs implemented in advanced FinFET processes.

Click here for more information about Synopsys' DesignWare MIPI C-PHY/D-PHY IP solution

Featured Paper

Improving Performance in High-Voltage Systems With Zero-Drift Hall-Effect Current Sensing

Sponsored by Texas Instruments

Learn how major industry trends are driving demands for isolated current sensing, and how new zero-drift Hall-effect current sensors can improve isolation and measurement drift while simplifying the design process.

Click here for more information

Featured Chalk Talk

PiezoListen: A New Kind of Speaker for New Applications

Sponsored by Mouser Electronics and TDK

Until recently, putting speakers into extremely space-constrained designs was a daunting challenge. Now, however, advances in piezo speakers bring remarkable performance to ultra-small ultra-thin speakers. In this episode of Chalk Talk, Amelia Dalton chats with Matt Reynolds of TDK about PiezoListen - a whole new kind of high-performance multilayer piezo speaker.

Click here for more information about TDK PiezoListen™ Ultra-Thin Piezo Speakers