editor's blog
Subscribe Now

SPICE-ing It Up

SPICE is pretty fundamental to circuit design. That’s obvious for cell and custom designers; for you digital folks, you get exempted only because a cell designer already did the work for you. And, as with everything EDA, things are getting harder to compute with each process node.

Part of it is incremental. New nodes come with increasingly important parasitic modeling. That’s always been the case from generation to generation, not because of new parasitics, but because of old ones that used to be ignored that now mattered. But with FinFETs, you have those plus complex new parasitic relationships that have never been there before.

Cadence says that, despite the fact that the “H” in HSIM* stands for “hierarchical,” this hierarchy gets screwed up by the Rs and Cs. Lose the hierarchy and you lose the performance advantage it provides.

There’s another change that’s made life tougher for SPICE. In earlier days, performance could be increased by partitioning the job into channels, with PMOS transistors connected to VDD and NMOS to ground. But power gating has screwed that all up: those connections aren’t direct anymore because of the gates in the way. The power network had to be solved separately from the design, with the result munged back together at the end.

And so performance has suffered. Cadence’s latest SPICE XPS (eXtensive Partitioning Simulator) algorithms are said to use new partitioning algorithms that scale more linearly than their earlier exponential versions. Performance with power gating has returned to what it was in the old days before power gating. They’re touting a 10X improvement in speed, along with fewer required computing resources.

And how, you might ask, are they doing the partitioning now? I did ask. And they’re not saying.

Their current release is optimized for memory. Mixed signal designs will run, but not quite as fast; they’re anticipating that being optimized in the first half of 2014.

You can read more in their announcement.

 

*Edited to fix the error noted below…

Leave a Reply

featured blogs
Jul 25, 2025
Manufacturers cover themselves by saying 'Contents may settle' in fine print on the package, to which I reply, 'Pull the other one'”it's got bells on it!'...

Libby's Lab

Libby's Lab Scopes out Texas Instruments AMC0311s Precision Isolated Amplifier

Sponsored by Mouser Electronics and Texas Instruments

Join Libby and Demo in this episode of “Libby’s Lab” as they explore the Texas Instruments AMC0311s Precision Isolated Amplifiers, available at Mouser.com! These amplifiers are great for protecting sensitive circuits in high-power applications. Keep your circuits charged and your ideas sparking!

Click here for more information about Texas Instruments AMC0x11S Precision Isolated Amplifier

featured chalk talk

Machine Learning on the Edge
Sponsored by Mouser Electronics and Infineon
Edge machine learning is a great way to allow embedded devices to run applications that can collect sensor data and locally process that data. In this episode of Chalk Talk, Amelia Dalton and Clark Jarvis from Infineon explore how the IMAGIMOB Studio, ModusToolbox™ Software, and PSoC and AURIX™ microcontrollers can help you develop a custom machine learning on the edge application from scratch. They also investigate how the IMAGIMOB Studio can help you easily develop and deploy AI/ML models and the benefits that the PSoC™ 6 Artificial Intelligence Evaluation Kit will bring to your next machine learning on the edge application design process.
Aug 12, 2024
56,398 views