editor's blog
Subscribe Now

SPICE-ing It Up

SPICE is pretty fundamental to circuit design. That’s obvious for cell and custom designers; for you digital folks, you get exempted only because a cell designer already did the work for you. And, as with everything EDA, things are getting harder to compute with each process node.

Part of it is incremental. New nodes come with increasingly important parasitic modeling. That’s always been the case from generation to generation, not because of new parasitics, but because of old ones that used to be ignored that now mattered. But with FinFETs, you have those plus complex new parasitic relationships that have never been there before.

Cadence says that, despite the fact that the “H” in HSIM* stands for “hierarchical,” this hierarchy gets screwed up by the Rs and Cs. Lose the hierarchy and you lose the performance advantage it provides.

There’s another change that’s made life tougher for SPICE. In earlier days, performance could be increased by partitioning the job into channels, with PMOS transistors connected to VDD and NMOS to ground. But power gating has screwed that all up: those connections aren’t direct anymore because of the gates in the way. The power network had to be solved separately from the design, with the result munged back together at the end.

And so performance has suffered. Cadence’s latest SPICE XPS (eXtensive Partitioning Simulator) algorithms are said to use new partitioning algorithms that scale more linearly than their earlier exponential versions. Performance with power gating has returned to what it was in the old days before power gating. They’re touting a 10X improvement in speed, along with fewer required computing resources.

And how, you might ask, are they doing the partitioning now? I did ask. And they’re not saying.

Their current release is optimized for memory. Mixed signal designs will run, but not quite as fast; they’re anticipating that being optimized in the first half of 2014.

You can read more in their announcement.

 

*Edited to fix the error noted below…

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys USB4 PHY Silicon Correlation with Keysight ADS Simulation

Sponsored by Synopsys

This video features Synopsys USB4 PHY IP showing silicon correlation with IBIS-AMI simulation using Keysight PathWave ADS.

Learn More

featured paper

Addressing high-voltage design challenges with reliable and affordable isolation tech

Sponsored by Texas Instruments

Check out TI’s new white paper for an overview of galvanic isolation techniques, as well as how to improve isolated designs in electric vehicles, grid infrastructure, factory automation and motor drives.

Click to read more

featured chalk talk

Hot-Swap and Power Protection -- Mouser Electronics and Analog Devices

Sponsored by Mouser Electronics and Analog Devices

When it comes to our always-on, critical systems we need to carefully consider power protection and maintainability. In this episode of Chalk Talk, Amelia Dalton and Dwight Larson investigate the issues that surround hot-plugging into an energized power supply, the best solutions to consider, what the different hot-swap circuit topologies look like for a variety of applications and why the MAX15090B/C with its innovative current foldback startup may be the best solution for your next design.

Click here for more information about Maxim Integrated MAX15090B/MAX15090C Hot Swap ICs