editor's blog
Subscribe Now

Comparing Oscillator Temp Compensation

MEMS oscillators are making a serious challenge to quartz these days. We looked at Sand 9’s approach recently, but as I thumbed back through other recent announcements, I came back across one that, in retrospect, had some relevant bits to discuss.

Silicon Labs’ earlier announcement focused on the CMOS+MEMS aspect of their work. At the time, I didn’t see anything I could add to the discussion, so I let the announcement stand on its own. But in light of some of the issues I covered in Sand 9’s release, I thought there were some things to come back to on the Silicon Labs story – some of which weren’t immediately apparent in their release.

This relates to temperature compensation, which seems to be the number one concern with these devices. Yes, everyone tries to compensate with circuitry, but if you can minimize the raw temperature effects, then the compensation is easier.

We looked at the stack that Sand 9 built to do this – silicon and oxide having opposing temperature coefficients and therefore physically compensating for each other. Well, Silicon Labs does something similar but not identical.

They use SiGe as the active material for the resonator, but they back it with SiO2, which again opposes the temperature characteristics of the SiGe.

The other subtlety here relates to the CMOS processing aspect, although again, it seems to be two different ways of accomplishing the same thing. Sand 9 discussed how having the compensation ASIC in the same package was important so that the ASIC was experiencing the same temperature as the sensor it was compensating.

With the Silicon Labs approach, this happens as a direct result of combining MEMS and CMOS on the same die: The compensation circuitry isn’t just next to the sensor; it’s on the same die as the sensor. So again, it experiences the same temperatures as the sensor. It’s probably even closer, although at some point, if you start arguing about hot spots on the actual die, you could question whether mere monolithic integration guarantees better compensation. It depends on where things are on the die and how “hot” the circuits are. So it remains to be proven whether monolithic compensation is practically any more effective than a well-engineered die-by-die solution.

You can find more on Silicon Labs’ process here.

Leave a Reply

featured blogs
Oct 15, 2021
We will not let today's gray and wet weather in Fort Worth (home of Cadence's Pointwise team) put a damper on the week's CFD news which contains something from the highbrow to the... [[ Click on the title to access the full blog on the Cadence Community site. ...
Oct 13, 2021
How many times do you search the internet each day to track down for a nugget of knowhow or tidbit of trivia? Can you imagine a future without access to knowledge?...
Oct 13, 2021
High-Bandwidth Memory (HBM) interfaces prevent bottlenecks in online games, AI applications, and more; we explore design challenges and IP solutions for HBM3. The post HBM3 Will Feed the Growing Need for Speed appeared first on From Silicon To Software....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Enter the InnovateFPGA Design Contest to Solve Real-World Sustainability Problems

Sponsored by Intel

The Global Environment Facility Small Grants Programme (GEF SGP), implemented by the United Nations Development Programme, is collaborating with the InnovateFPGA contest to support 7 funded projects that are looking for technical solutions in biodiversity, sustainable agriculture, and marine conservation. Contestants have access to the Intel® Cyclone® V SoC FPGA in the Cloud Connectivity Kit, Analog Devices plug-in boards, and Microsoft Azure IoT.

Learn more about the contest and enter here by October 31, 2021

featured paper

3 key design decisions for any desktop 3D printer design

Sponsored by Texas Instruments

Learn about three important design considerations to take your 3D print design to the next level.

Click to read more

featured chalk talk

AC Protection & Motor Control in HVAC Systems

Sponsored by Mouser Electronics and Littelfuse

The design of HVAC systems poses unique challenges for things like motor control and circuit protection. System performance and reliability are critical, and those come in part from choosing the right components for the job. In this episode of Chalk Talk, Amelia Dalton chats with Ryan Sheahen of Littelfuse about choosing the right components for your next HVAC design.

Click here for more information about Littelfuse AC Protection & Motor Control in HVAC Solutions