editor's blog
Subscribe Now

Comparing Oscillator Temp Compensation

MEMS oscillators are making a serious challenge to quartz these days. We looked at Sand 9’s approach recently, but as I thumbed back through other recent announcements, I came back across one that, in retrospect, had some relevant bits to discuss.

Silicon Labs’ earlier announcement focused on the CMOS+MEMS aspect of their work. At the time, I didn’t see anything I could add to the discussion, so I let the announcement stand on its own. But in light of some of the issues I covered in Sand 9’s release, I thought there were some things to come back to on the Silicon Labs story – some of which weren’t immediately apparent in their release.

This relates to temperature compensation, which seems to be the number one concern with these devices. Yes, everyone tries to compensate with circuitry, but if you can minimize the raw temperature effects, then the compensation is easier.

We looked at the stack that Sand 9 built to do this – silicon and oxide having opposing temperature coefficients and therefore physically compensating for each other. Well, Silicon Labs does something similar but not identical.

They use SiGe as the active material for the resonator, but they back it with SiO2, which again opposes the temperature characteristics of the SiGe.

The other subtlety here relates to the CMOS processing aspect, although again, it seems to be two different ways of accomplishing the same thing. Sand 9 discussed how having the compensation ASIC in the same package was important so that the ASIC was experiencing the same temperature as the sensor it was compensating.

With the Silicon Labs approach, this happens as a direct result of combining MEMS and CMOS on the same die: The compensation circuitry isn’t just next to the sensor; it’s on the same die as the sensor. So again, it experiences the same temperatures as the sensor. It’s probably even closer, although at some point, if you start arguing about hot spots on the actual die, you could question whether mere monolithic integration guarantees better compensation. It depends on where things are on the die and how “hot” the circuits are. So it remains to be proven whether monolithic compensation is practically any more effective than a well-engineered die-by-die solution.

You can find more on Silicon Labs’ process here.

Leave a Reply

featured blogs
Jun 2, 2023
Diversity, equity, and inclusion (DEI) are not just words but values that are exemplified through our culture at Cadence. In the DEI@Cadence blog series, you'll find a community where employees share their perspectives and experiences. By providing a glimpse of their personal...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....
Jun 2, 2023
Explore the importance of big data analytics in the semiconductor manufacturing process, as chip designers pull insights from throughout the silicon lifecycle. The post Demanding Chip Complexity and Manufacturing Requirements Call for Data Analytics appeared first on New Hor...

featured video

Synopsys Solution for RTL to Signoff Power Analysis

Sponsored by Synopsys

Synopsys’ industry-leading power analysis solution built on PrimePower technology that enables early RTL exploration, low power implementation and power signoff for design of energy-efficient SoCs.

Learn more about Synopsys’ Energy-Efficient SoCs Solutions

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Quick Connect IoT
Sponsored by Mouser Electronics and Renesas
Rapid prototyping is a vital first element to get your next IoT design into the real world. In this episode of Chalk Talk, Brad Rex from Renesas and Amelia Dalton examine Renesas’ new Quick Connect IoT out of the box IoT solution that combines well-defined API and middleware with certified module solutions to make rapid prototyping faster and easier than ever before. They also investigate how the Quick Connect IoT integrated software can help MCUs, sensors and connectivity devices communicate effectively and how you can get started using Quick-Connect IoT for your next IoT design.
Oct 31, 2022
26,618 views