editor's blog
Subscribe Now

Comparing Oscillator Temp Compensation

MEMS oscillators are making a serious challenge to quartz these days. We looked at Sand 9’s approach recently, but as I thumbed back through other recent announcements, I came back across one that, in retrospect, had some relevant bits to discuss.

Silicon Labs’ earlier announcement focused on the CMOS+MEMS aspect of their work. At the time, I didn’t see anything I could add to the discussion, so I let the announcement stand on its own. But in light of some of the issues I covered in Sand 9’s release, I thought there were some things to come back to on the Silicon Labs story – some of which weren’t immediately apparent in their release.

This relates to temperature compensation, which seems to be the number one concern with these devices. Yes, everyone tries to compensate with circuitry, but if you can minimize the raw temperature effects, then the compensation is easier.

We looked at the stack that Sand 9 built to do this – silicon and oxide having opposing temperature coefficients and therefore physically compensating for each other. Well, Silicon Labs does something similar but not identical.

They use SiGe as the active material for the resonator, but they back it with SiO2, which again opposes the temperature characteristics of the SiGe.

The other subtlety here relates to the CMOS processing aspect, although again, it seems to be two different ways of accomplishing the same thing. Sand 9 discussed how having the compensation ASIC in the same package was important so that the ASIC was experiencing the same temperature as the sensor it was compensating.

With the Silicon Labs approach, this happens as a direct result of combining MEMS and CMOS on the same die: The compensation circuitry isn’t just next to the sensor; it’s on the same die as the sensor. So again, it experiences the same temperatures as the sensor. It’s probably even closer, although at some point, if you start arguing about hot spots on the actual die, you could question whether mere monolithic integration guarantees better compensation. It depends on where things are on the die and how “hot” the circuits are. So it remains to be proven whether monolithic compensation is practically any more effective than a well-engineered die-by-die solution.

You can find more on Silicon Labs’ process here.

Leave a Reply

featured blogs
Dec 9, 2019
'Virtuoso Meets Maxwell' is a blog series aimed at exploring the capabilities and potential of Virtuoso® RF Solution and Virtuoso MultiTech. So, how does Virtuoso meets Maxwell? Now, the... [[ Click on the title to access the full blog on the Cadence Community...
Dec 6, 2019
SC19 has come and gone. Anticipation for SC20 in Atlanta is already building. Before we look ahead, what were some highlights from SC19? AI is Everywhere AI is affecting all aspects of life. At SC19, technical presentations showed how AI and HPC are helping researchers cure h...
Dec 6, 2019
Waterproof coat can turn into a heat-trapping sleeping bag at night and into a cross-body bag for carrying around during the day....
Dec 6, 2019
[From the last episode: We looked at the role of interrupts in a processor, and how they help save energy in battery-powered IoT devices.] OK, time to take a breath. We'€™ve covered a wide range of computing concepts; time for a quick review. We started by looking at the ro...