editor's blog
Subscribe Now

What Is “Good” Yield?

In a recent piece on antenna tuning, I addressed circuit and MEMS approaches, and one of the advantages of circuits was said to be better yield. So I contacted the MEMS folks in that space for their comments on yield, and I received a carefully-worded comment from Cavendish Kinetics (and none from WiSpry).

I interpreted the Cavendish comment as basically acknowledging that yields weren’t great but were on a typical learning curve. Well, it turns out that interpreting the comments as saying yield is good or bad depends on what standard you hold for “good” yield.

I had a follow-up conversation with Cavendish Kinetics’ Larry Morrell, who had provided the yield comment. The purpose of the conversation was to address their technology more generally (which we’ll cover in the future), but the yield topic cropped up. Apparently my interpretation of Larry’s comments had caused some… heartburn.

So, while this was spurred by this particular exchange, it raises a more general question: What should “typical” expected yields be? If you’re talking about MEMS, according to Larry, you might expect in the 40-60% range. So being on a typical learning curve that tops out at such numbers would suggest yields at or below the 40% range.

But not all MEMS suppliers are in that range. For instance, InvenSense does wafer-level bonding between a MEMS wafer and an ASIC wafer. Because they don’t rely on known-good dice, their overall yield will be a product of the MEMS and ASIC yields. They’ll be throwing away any good ASICs that happen to mate up with a faulty MEMS die and vice versa. So such a strategy works only if yields are high for both the MEMS and the ASIC. And a quick conversation with an InvenSense representative at a show last year suggested their yields are in the 90%+ ranges.

Cavendish Kinetics also says their yields are in the 90% range. So why the cautious words? Because they’re not using “typical” MEMS yields as their standard; they’re using CMOS yields as their standard, and those should be well into the 90s. So having around 90% yield isn’t good enough; they’re still working up the curve. In fact, looking back at Larry’s words, he does say “…normal yield learning curve for a CMOS process.” I just interpreted that to mean the shape, not necessarily the absolute values.

Going forward, it suggests that standards could be changing. Companies scoring in the 90s will increasingly put pressure on lower-yielding companies if they meet in the market. That last qualifier is important, since there are many MEMS companies that address very specific niche markets where there is little competition and where pricing isn’t so deadly. As long as no 90%ers dive in to compete, they’re OK. But they should certainly have their radar out…

Leave a Reply

featured blogs
Oct 20, 2020
In 2020, mobile traffic has skyrocketed everywhere as our planet battles a pandemic. Samtec.com saw nearly double the mobile traffic in the first two quarters than it normally sees. While these levels have dropped off from their peaks in the spring, they have not returned to ...
Oct 20, 2020
Voltus TM IC Power Integrity Solution is a power integrity and analysis signoff solution that is integrated with the full suite of design implementation and signoff tools of Cadence to deliver the... [[ Click on the title to access the full blog on the Cadence Community site...
Oct 19, 2020
Have you ever wondered if there may another world hidden behind the facade of the one we know and love? If so, would you like to go there for a visit?...
Oct 16, 2020
[From the last episode: We put together many of the ideas we'€™ve been describing to show the basics of how in-memory compute works.] I'€™m going to take a sec for some commentary before we continue with the last few steps of in-memory compute. The whole point of this web...

Featured Video

Four Ways to Improve Verification Performance and Throughput

Sponsored by Cadence Design Systems

Learn how to address your growing verification needs. Hear how Cadence Xcelium™ Logic Simulation improves your design’s performance and throughput: improving single-core engine performance, leveraging multi-core simulation, new features, and machine learning-optimized regression technology for up to 5X faster regressions.

Click here for more information about Xcelium Logic Simulation

featured paper

Designing highly efficient, powerful and fast EV charging stations

Sponsored by Texas Instruments

Scaling the necessary power for fast EV charging stations can be challenging. One solution is to use modular power converters stacked in parallel. Learn more in our technical article.

Click here to download the technical article

Featured Chalk Talk

Innovative Hybrid Crowbar Protection for AC Power Lines

Sponsored by Mouser Electronics and Littelfuse

Providing robust AC line protection is a tough engineering challenge. Lightning and other unexpected events can wreak havoc with even the best-engineered power supplies. In this episode of Chalk Talk, Amelia Dalton chats with Pete Pytlik of Littelfuse about innovative SIDACtor semiconductor hybrid crowbar protection for AC power lines, that combine the best of TVS and MOV technologies to deliver superior low clamping voltage for power lines.

More information about Littelfuse SIDACtor + MOV AC Line Protection