editor's blog
Subscribe Now

Could Mechanical Replace Electrical?

The MEMS Industry Group sponsored a webinar recently with a focus on switches. Literally; mechanical switches. Just really tiny ones made of a beam that can be actuated by an electrical signal.

OK, so I guess it’s not completely mechanical, it’s electromechanical, but the suggestion is that you could configure complete circuits with these.

The presenter was Maarten De Boer of CMU, and he painted a picture of what could happen with the continued evolution of micro- and nanoswitches. The “pros” of such an approach are:

  • Lower power (only needed to actuate; don’t necessarily need holding power)
  • Better “off” characteristics; there’s no leakage (also contributes to lower power)
  • You can carry RF signals

The “cons” are:

  • They’re slower to respond (if you had circuits made out of them, the suggestion was to parallelize as much as possible to avoid ripple delays in serial circuits)
  • They’re larger – at present (the suggestion being that this could evolve… I don’t know about competing with sub-10-nm sizes… Yes, I know the whole transistor isn’t sub-10-nm, but still…)
  • This only works for digital – there’s no amplification, so you clearly wouldn’t replace analog transistors with switches

Reliability is still a work in progress; work is underway to determine failure times and modes.

To be clear, this wasn’t a suggestion that SoC designers around the world should stop their work and re-evaluate whether to replace billions of transistors with billions of switches (what could possibly go wrong??). But it was an interesting look at what could be possible as the relatively large switches we have today scale down into the nano realm. You never know…

You can view this and other past webinars a the MIG website.

Leave a Reply

featured blogs
Jan 17, 2020
[From the last episode: We saw how virtual memory helps resolve the differences between where a compiler thinks things will go in memory and the real memories in a real system.] We'€™ve talked a lot about memory '€“ different kinds of memory, cache memory, heap memory, vi...
Jan 16, 2020
While Samtec started as a connector company with a focus on two-piece, pin-and-socket board stacking systems, High-Speed Board Stacking connectors and High-Speed Cable Assemblies now make up a significant portion of our sales. To support development in this area, in December ...
Jan 16, 2020
Betting on Hydrogen-Powered Cars On-demand DRC within P&R cuts closure time in half for MaxLinear Functional Safety Verification For AV SoC Designs Accelerated With Advanced Tools Automating the pain out of clock domain crossing verification Mentor unpacks LVS and LVL iss...
Jan 16, 2020
This little robot arm continually points to the current location of the International Space Station (ISS)....

Featured Video

RedFit IDC SKEDD Connector

Sponsored by Wurth Electronics and Mouser Electronics

Why attach a header connector to your PCB when you really don’t need one? If you’re plugging a ribbon cable into your board, particularly for a limited-use function such as provisioning, diagnostics, or testing, it can be costly and clunky to add a header connector to your BOM, and introduce yet another component to pick and place. Wouldn’t it be great if you could plug directly into your board with no connector required on the PCB side? In this episode of Chalk Talk, Amelia Dalton chats with Ben Arden from Wurth Electronics about Redfit, a slick new connector solution that plugs directly into standard via holes on your PCB.

Click here for more information about Wurth Electronics REDFIT IDC SKEDD Connector