editor's blog
Subscribe Now

Could Mechanical Replace Electrical?

The MEMS Industry Group sponsored a webinar recently with a focus on switches. Literally; mechanical switches. Just really tiny ones made of a beam that can be actuated by an electrical signal.

OK, so I guess it’s not completely mechanical, it’s electromechanical, but the suggestion is that you could configure complete circuits with these.

The presenter was Maarten De Boer of CMU, and he painted a picture of what could happen with the continued evolution of micro- and nanoswitches. The “pros” of such an approach are:

  • Lower power (only needed to actuate; don’t necessarily need holding power)
  • Better “off” characteristics; there’s no leakage (also contributes to lower power)
  • You can carry RF signals

The “cons” are:

  • They’re slower to respond (if you had circuits made out of them, the suggestion was to parallelize as much as possible to avoid ripple delays in serial circuits)
  • They’re larger – at present (the suggestion being that this could evolve… I don’t know about competing with sub-10-nm sizes… Yes, I know the whole transistor isn’t sub-10-nm, but still…)
  • This only works for digital – there’s no amplification, so you clearly wouldn’t replace analog transistors with switches

Reliability is still a work in progress; work is underway to determine failure times and modes.

To be clear, this wasn’t a suggestion that SoC designers around the world should stop their work and re-evaluate whether to replace billions of transistors with billions of switches (what could possibly go wrong??). But it was an interesting look at what could be possible as the relatively large switches we have today scale down into the nano realm. You never know.

You can view this and other past webinars a the MIG website.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

MaxLinear Integrates Analog & Digital Design in One Chip with Cadence 3D Solvers

Sponsored by Cadence Design Systems

MaxLinear has the unique capability of integrating analog and digital design on the same chip. Because of this, the team developed some interesting technology in the communication space. In the optical infrastructure domain, they created the first fully integrated 5nm CMOS PAM4 DSP. All their products solve critical communication and high-frequency analysis challenges.

Learn more about how MaxLinear is using Cadence’s Clarity 3D Solver and EMX Planar 3D Solver in their design process.

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

Advanced Gate Drive for Motor Control
Sponsored by Infineon
Passing EMC testing, reducing power dissipation, and mitigating supply chain issues are crucial design concerns to keep in mind when it comes to motor control applications. In this episode of Chalk Talk, Amelia Dalton and Rick Browarski from Infineon explore the role that MOSFETs play in motor control design, the value that adaptive MOSFET control can have for motor control designs, and how Infineon can help you jump start your next motor control design.
Feb 6, 2024
11,198 views