editor's blog
Subscribe Now

Could Mechanical Replace Electrical?

The MEMS Industry Group sponsored a webinar recently with a focus on switches. Literally; mechanical switches. Just really tiny ones made of a beam that can be actuated by an electrical signal.

OK, so I guess it’s not completely mechanical, it’s electromechanical, but the suggestion is that you could configure complete circuits with these.

The presenter was Maarten De Boer of CMU, and he painted a picture of what could happen with the continued evolution of micro- and nanoswitches. The “pros” of such an approach are:

  • Lower power (only needed to actuate; don’t necessarily need holding power)
  • Better “off” characteristics; there’s no leakage (also contributes to lower power)
  • You can carry RF signals

The “cons” are:

  • They’re slower to respond (if you had circuits made out of them, the suggestion was to parallelize as much as possible to avoid ripple delays in serial circuits)
  • They’re larger – at present (the suggestion being that this could evolve… I don’t know about competing with sub-10-nm sizes… Yes, I know the whole transistor isn’t sub-10-nm, but still…)
  • This only works for digital – there’s no amplification, so you clearly wouldn’t replace analog transistors with switches

Reliability is still a work in progress; work is underway to determine failure times and modes.

To be clear, this wasn’t a suggestion that SoC designers around the world should stop their work and re-evaluate whether to replace billions of transistors with billions of switches (what could possibly go wrong??). But it was an interesting look at what could be possible as the relatively large switches we have today scale down into the nano realm. You never know.

You can view this and other past webinars a the MIG website.

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys PCIe 6.0 IP TX and RX Successful Interoperability with Keysight

Sponsored by Synopsys

This DesignCon 2022 video features Synopsys PHY IP for PCIe 6.0 showing wide open PAM-4 eyes, good jitter breakdown decomposition on the Keysight oscilloscope, excellent receiver performance, and simulation-to-silicon correlation.

Click here for more information

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

NEUTRIK Fiber Optic Solutions

Sponsored by Mouser Electronics and Neutrik

The advantages and benefits of fiber optics are a mile long…but how can you design with them? How can you clean them? How do you repair them? Need a bit of a refresher? In this episode of Chalk Talk, Amelia Dalton chats with David Kuklinski from Neutrik about the OpticalCon advanced, OpticalCon LITE and Opticalcon DragonFly fiber optic solutions from Neutrik. They take a closer look at what benefits each of these solutions brings to the table, what kind of configurations are offered with each of these fiber optic solutions and what kind of performance you can expect when using them in your next design.

Click here for more information about Neutrik opticalCON® Fiber Optic Connector System