editor's blog
Subscribe Now

A Reverse Proof Mass?

This continues both the theme of “stuff at Sensors Expo” and non-traditional approaches to common sensors. Only this time, it’s the most ubiquitous of motion sensors, the accelerometer.

Most accelerometers use some sort of “proof mass,” a piece of silicon or metal or quartz or… whatever. Inertia makes the proof mass “move” in the opposite direction of acceleration, and you can measure that apparent movement.

Memsic (whose mag sensor we just looked at), does something different. The fundamental principle of inertia is still the same, but the proof mass, well, isn’t a mass. If you’ve ever carried a helium balloon in your car, you’ve seen the effect. (I haven’t, or I haven’t been perspicacious enough to notice and remember, so I’m taking their word for it.) When you accelerate your car, you’d expect the balloon to move backwards, just like those toys and stray French fries and the dog do.

But it doesn’t. It moves forwards. Why? Because the gas is lighter than the surrounding air (even compressed in a balloon), and the heavier air moves back, displacing the balloon forwards.

Memsic exploits this same behavior by heating gas in a cavity. They use nitrogen, although that’s not really critical. The point is that, by heating the middle of the chamber, you get this “ball” of warmer gas (I keep wanting to call it a “bolus” but I’m not sure if that word would apply). This heated mass is less dense – and hence lighter – than the gas on either side of it. So when the unit accelerates, it moves not back, like a normal proof mass would do, but forward, in the direction of acceleration. It’s like the proof mass is all the non-heated gas.

By putting temperature sensors at either end of the chamber, you can detect the approach and retreat of the heated gas and use that to signal acceleration.

The benefits of this are that you don’t get any of the messiness of a normal proof mass. There are no issues of shock, vibration, resonance, or stiction. Its calibration is more stable and it has better bias stability. The main drawbacks are that it’s not particularly responsive, so you can’t do high-G shock detection. And, of course, you need power for the heater, although they say it’s not that much – you could still use this in a phone.

The primary apps they’ve seen so far are for electronic stability control in cars and high-end inclinometers.

You can find out more on their website.

Leave a Reply

featured blogs
Apr 25, 2024
Cadence's seven -year partnership with'¯ Team4Tech '¯has given our employees unique opportunities to harness the power of technology and engage in a three -month philanthropic project to improve the livelihood of communities in need. In Fall 2023, this partnership allowed C...
Apr 24, 2024
Learn about maskless electron beam lithography and see how Multibeam's industry-first e-beam semiconductor lithography system leverages Synopsys software.The post Synopsys and Multibeam Accelerate Innovation with First Production-Ready E-Beam Lithography System appeared fir...
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

FlyOver® Technology: Twinax FlyOver® System for Next Gen Speeds -- Samtec and Mouser
Sponsored by Mouser Electronics and Samtec
In this episode of Chalk Talk, Amelia Dalton and Matthew Burns from Samtec investigate the challenges of routing high speed data over lossy PCBs. They also discuss the benefits that Samtec’s Flyover® cable assembly systems bring to data center and embedded designs and how Samtec is furthering innovation with their high speed interconnect solutions. 
Apr 15, 2024
1,323 views