editor's blog
Subscribe Now

Simpler CDC Exception Handling

For static timing analysis, it’s a concept that goes back years. You get a bunch of violations, and then you have to decide which ones represent false paths or multi-cycle paths and create “exceptions” for them. Tedious.

Well, apparently formal analysis can have the same issue. Only here they’re referred to as “waivers,” according to Real Intent. If you run analysis and get a long list of potential violations, you have to go through the list and, one by one, check them for “false positives” and mark them as such. Time-consuming and error-prone. And tedious. Especially when working on large-scale SoCs (so-called “giga-scale”).

In their latest release of Meridian CDC, which does clock-domain crossing verification, Real Intent has provided a different way of handling this: provide more granular control over the run parameters in the form of rules or constraints that can be successively refined.

Using the old method, if a particular over-reaching aspect of analysis caused 100 false positives, you’d have to find all 100 and “waive” them. With the new approach, when you find the first one, you make the refinement, and then, with a rerun of the analysis, the one you found and the other 99 all disappear. OK, not disappear per se, but they’re grouped together as not being an unexpected finding. You can also review that list to make sure nothing snuck through. (This is a simplification of a more sophisticated overall process, but it captures the essence.)

This may take some iterations, but in the end, you can have a clean run with no exceptions, and the way you got there is less likely to have involved a mistake here or there.

You can find out more about Real Intent’s latest Meridian CDC release in their announcement.

Leave a Reply

featured blogs
Dec 1, 2020
If you'€™d asked me at the beginning of 2020 as to the chances of my replicating an 1820 Welsh dresser, I would have said '€œzero,'€ which just goes to show how little I know....
Dec 1, 2020
More package designers these days, with the increasing component counts and more complicated electrical constraints, are shifting to using a front-end schematic capture tool. As with IC and PCB... [[ Click on the title to access the full blog on the Cadence Community site. ]...
Dec 1, 2020
UCLA’s Maxx Tepper gives us a brief overview of the Ocean High-Throughput processor to be used in the upgrade of the real-time event selection system of the CMS experiment at the CERN LHC (Large Hadron Collider). The board incorporates Samtec FireFly'„¢ optical cable ...
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...

featured video

Introduction to the fundamental technologies of power density

Sponsored by Texas Instruments

The need for power density is clear, but what are the critical components that enable higher power density? In this overview video, we will provide a deeper understanding of the fundamental principles of high-power-density designs, and demonstrate how partnering with TI, and our advanced technological capabilities can help improve your efforts to achieve those high-power-density figures.

featured paper

Simplify your isolated current & voltage sensing designs

Sponsored by Texas Instruments

Learn how the latest isolated amplifiers and isolated ADCs can operate with a single supply on the low side, and why this offers substantial benefits over traditional solutions.

Click here to download the whitepaper

Featured Chalk Talk

Accelerate the Integration of Power Conversion with microBUCK® and microBRICK™

Sponsored by Mouser Electronics and Vishay

In the world of power conversion, multi-chip packaging, thermal performance, and power density can make all of the difference in the success of your next design. In this episode of Chalk Talk, Amelia Dalton chats with Raymond Jiang about the trends and challenges in power delivery and how you can leverage the unique combination of discrete MOSFET design, IC expertise, and packaging capability of Vishay’s microBRICK™and microBUCK® integrated voltage regulators.

Click here for more information about Vishay microBUCK® and microBRICK™ DC/DC Regulators