editor's blog
Subscribe Now

New Sensor Parameter Standard

Early this year we took a look at MEMS standards (or the need therefor), and one of the active efforts involved unifying sensor parameters and data sheets so that users could compare and combine different sensors from different companies – a challenging task at present.

Well, that effort has now yielded some results. The “Sensor Performance Parameter Definitions” document has been released under the auspices of the MEMS Industry Group (MIG). The effort itself was led by Intel and Qualcomm, with input from a number of different sensor players.

While many such standards documents start with a limited scope and just can’t stop, a quick look at the table of contents suggests that hasn’t happened here. The bulk of the document is simply a set of definitions for parameters for different sensors. It is augmented by helpful lists of terms and acronyms, symbols and equations, and measurement conversions.

The sensors covered by the document are:

  • Accelerometers
  • Magnetometers
  • Gyroscopes
  • Pressure Sensors
  • Humidity Sensors
  • Temperature Sensors
  • Ambient Light Sensors
  • Proximity Sensors

This seems to cover all of the Windows HID-required sensors (since inclinometers and orientation sensors are typically fused versions of the above) except for GPS.

Each sensor type has its own parameters. For example, the following parameters are defined for accelerometers:

  • Full Scale Range
  • Digital Bit Depth
  • Zero-g Offset
  • Zero-g Offset Temperature Coefficient
  • Sensitivity
  • Sensitivity Temperature Coefficient
  • Noise
  • Current Consumption
  • Output Data Rate (ODR)
  • Filter -3dB Cutoff
  • Internal Oscillator Tolerance
  • Cross-Axis Sensitivity
  • Integral Non-Linearity
  • Transition Time
  • Data Ready Delay

For each parameter, the following information is provided:

  • Any aliases or other names for the parameter
  • A definition
  •  Conditions under which the parameter is specified (typically more than one)
  • Distribution (e.g., minimum/typical/maximum)

Various timing diagrams and other graphs are used to illustrate the parameters.

And that’s pretty much all there is to it.  A modest 60 pages (with lots of whitespace, easy to read). As promised, no more, no less.

You can find more on the announcement in their release; the document is available for download on the MIG website (you’ll need to provide your info).

Leave a Reply

featured blogs
Oct 23, 2020
Processing a component onto a PCB used to be fairly straightforward. Through hole products, a single or double row surface mount with a larger center-line rarely offer unique challenges obtaining a proper solder joint. However, as electronics continue to get smaller and conne...
Oct 23, 2020
[From the last episode: We noted that some inventions, like in-memory compute, aren'€™t intuitive, being driven instead by the math.] We have one more addition to add to our in-memory compute system. Remember that, when we use a regular memory, what goes in is an address '...
Oct 23, 2020
Any suggestions for a 4x4 keypad in which the keys aren'€™t wobbly and you don'€™t have to strike a key dead center for it to make contact?...
Oct 23, 2020
At 11:10am Korean time this morning, Cadence's Elias Fallon delivered one of the keynotes at ISOCC (International System On Chip Conference). It was titled EDA and Machine Learning: The Next Leap... [[ Click on the title to access the full blog on the Cadence Community ...

featured video

Demo: Low-Power Machine Learning Inference with DesignWare ARC EM9D Processor IP

Sponsored by Synopsys

Applications that require sensing on a continuous basis are always on and often battery operated. In this video, the low-power ARC EM9D Processors run a handwriting character recognition neural network graph to infer the letter that is written.

Click here for more information about DesignWare ARC EM9D / EM11D Processors

featured paper

An engineer’s guide to autonomous and collaborative industrial robots

Sponsored by Texas Instruments

As robots are becoming more commonplace in factories, it is important that they become more intelligent, autonomous, safer and efficient. All of this is enabled with precise motor control, advanced sensing technologies and processing at the edge, all with robust real-time communication. In our e-book, an engineer’s guide to industrial robots, we take an in-depth look at the key technologies used in various robotic applications.

Click here to download the e-book

Featured Chalk Talk

Mindi Analog Simulator

Sponsored by Mouser Electronics and Microchip

It’s easy to go wrong in the analog portion of your design, particularly if you’re not an analog “expert.” Electrical simulation can help reduce risk and design re-spins. In this episode of Chalk Talk, Amelia Dalton chats with Rico Brooks of Microchip about the MPLAB Mindi tool, and how it can help reduce your design risk.

Click here for more information about MINDI Analog Simulator.