editor's blog
Subscribe Now

New Sensor Parameter Standard

Early this year we took a look at MEMS standards (or the need therefor), and one of the active efforts involved unifying sensor parameters and data sheets so that users could compare and combine different sensors from different companies – a challenging task at present.

Well, that effort has now yielded some results. The “Sensor Performance Parameter Definitions” document has been released under the auspices of the MEMS Industry Group (MIG). The effort itself was led by Intel and Qualcomm, with input from a number of different sensor players.

While many such standards documents start with a limited scope and just can’t stop, a quick look at the table of contents suggests that hasn’t happened here. The bulk of the document is simply a set of definitions for parameters for different sensors. It is augmented by helpful lists of terms and acronyms, symbols and equations, and measurement conversions.

The sensors covered by the document are:

  • Accelerometers
  • Magnetometers
  • Gyroscopes
  • Pressure Sensors
  • Humidity Sensors
  • Temperature Sensors
  • Ambient Light Sensors
  • Proximity Sensors

This seems to cover all of the Windows HID-required sensors (since inclinometers and orientation sensors are typically fused versions of the above) except for GPS.

Each sensor type has its own parameters. For example, the following parameters are defined for accelerometers:

  • Full Scale Range
  • Digital Bit Depth
  • Zero-g Offset
  • Zero-g Offset Temperature Coefficient
  • Sensitivity
  • Sensitivity Temperature Coefficient
  • Noise
  • Current Consumption
  • Output Data Rate (ODR)
  • Filter -3dB Cutoff
  • Internal Oscillator Tolerance
  • Cross-Axis Sensitivity
  • Integral Non-Linearity
  • Transition Time
  • Data Ready Delay

For each parameter, the following information is provided:

  • Any aliases or other names for the parameter
  • A definition
  •  Conditions under which the parameter is specified (typically more than one)
  • Distribution (e.g., minimum/typical/maximum)

Various timing diagrams and other graphs are used to illustrate the parameters.

And that’s pretty much all there is to it.  A modest 60 pages (with lots of whitespace, easy to read). As promised, no more, no less.

You can find more on the announcement in their release; the document is available for download on the MIG website (you’ll need to provide your info).

Leave a Reply

featured blogs
Jun 7, 2023
We explain how semiconductor designers create reliable, safe, and secure aerospace designs by leveraging IP and standards from automotive chip designs. The post Why Aerospace Semiconductor Designers Are Taking a Page from Their Automotive Friends appeared first on New Horizo...
Jun 6, 2023
At this year's DesignCon, Meta held a session on '˜PowerTree-Based PDN Analysis, Correlation, and Signoff for MR/AR Systems.' Presented by Kundan Chand and Grace Yu from Meta, they talked about power integrity (PI) analysis using Sigrity Aurora and Power Integrity tools such...
Jun 2, 2023
I just heard something that really gave me pause for thought -- the fact that everyone experiences two forms of death (given a choice, I'd rather not experience even one)....

featured video

Efficient Top-Level Interconnect Planning and Implementation with Synopsys IC Compiler II

Sponsored by Synopsys

This video shows how IC Compiler II and Fusion Compiler enable intelligent planning and implementation of complex interconnects through innovative Topological Interconnect Planning technology - accelerating schedules and achieving highest QoR.

Learn More

featured paper

EC Solver Tech Brief

Sponsored by Cadence Design Systems

The Cadence® Celsius™ EC Solver supports electronics system designers in managing the most challenging thermal/electronic cooling problems quickly and accurately. By utilizing a powerful computational engine and meshing technology, designers can model and analyze the fluid flow and heat transfer of even the most complex electronic system and ensure the electronic cooling system is reliable.

Click to read more

featured chalk talk

Traction Inverter
Sponsored by Infineon
Not only are traction inverters integral parts of an electric drive train and vital to the vehicle motion, but they can also make a big difference when it comes to the energy efficiency and functional safety of electric vehicles. In this episode of Chalk Talk, Amelia Dalton chats with Mathew Anil from Infineon about the variety of roles that traction inverters play battery electric vehicles, how silicon carbide technology in traction inverters can reduce the size of electric car batteries and how traction inverters can also help with cost reduction, functional safety and more.
Nov 9, 2022
26,331 views