editor's blog
Subscribe Now

New Sensor Parameter Standard

Early this year we took a look at MEMS standards (or the need therefor), and one of the active efforts involved unifying sensor parameters and data sheets so that users could compare and combine different sensors from different companies – a challenging task at present.

Well, that effort has now yielded some results. The “Sensor Performance Parameter Definitions” document has been released under the auspices of the MEMS Industry Group (MIG). The effort itself was led by Intel and Qualcomm, with input from a number of different sensor players.

While many such standards documents start with a limited scope and just can’t stop, a quick look at the table of contents suggests that hasn’t happened here. The bulk of the document is simply a set of definitions for parameters for different sensors. It is augmented by helpful lists of terms and acronyms, symbols and equations, and measurement conversions.

The sensors covered by the document are:

  • Accelerometers
  • Magnetometers
  • Gyroscopes
  • Pressure Sensors
  • Humidity Sensors
  • Temperature Sensors
  • Ambient Light Sensors
  • Proximity Sensors

This seems to cover all of the Windows HID-required sensors (since inclinometers and orientation sensors are typically fused versions of the above) except for GPS.

Each sensor type has its own parameters. For example, the following parameters are defined for accelerometers:

  • Full Scale Range
  • Digital Bit Depth
  • Zero-g Offset
  • Zero-g Offset Temperature Coefficient
  • Sensitivity
  • Sensitivity Temperature Coefficient
  • Noise
  • Current Consumption
  • Output Data Rate (ODR)
  • Filter -3dB Cutoff
  • Internal Oscillator Tolerance
  • Cross-Axis Sensitivity
  • Integral Non-Linearity
  • Transition Time
  • Data Ready Delay

For each parameter, the following information is provided:

  • Any aliases or other names for the parameter
  • A definition
  •  Conditions under which the parameter is specified (typically more than one)
  • Distribution (e.g., minimum/typical/maximum)

Various timing diagrams and other graphs are used to illustrate the parameters.

And that’s pretty much all there is to it.  A modest 60 pages (with lots of whitespace, easy to read). As promised, no more, no less.

You can find more on the announcement in their release; the document is available for download on the MIG website (you’ll need to provide your info).

Leave a Reply

featured blogs
Sep 21, 2021
Placing component leads accurately as per the datasheet is an important task while creating a package footprint symbol. As the pin pitch goes down, the size and location of the component lead play a... [[ Click on the title to access the full blog on the Cadence Community si...
Sep 21, 2021
Learn how our high-performance FPGA prototyping tools enable RTL debug for chip validation teams, eliminating simulation/emulation during hardware debugging. The post High Debug Productivity Is the FPGA Prototyping Game Changer: Part 1 appeared first on From Silicon To Softw...
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Accurate Full-System Thermal 3D Analysis

Sponsored by Cadence Design Systems

Designing electronics for the data center challenges designers to minimize and dissipate heat. Electrothermal co-simulation requires system components to be accurately modeled and analyzed. Learn about a true 3D solution that offers full system scalability with 3D analysis accuracy for the entire chip, package, board, and enclosure.

Click here for more information about Celsius Thermal Solver

featured paper

Configurable Input/Output Modes for PLC Systems Using the MAX22000 and MAX14914A

Sponsored by Maxim Integrated (now part of Analog Devices)

This application note features input/ components on the MAX22000 that may be used in analog input and output configuration. Circuit configurations are shown for common industrial Analog modes.

Click to read more

featured chalk talk

Security Regulations Drive Requirements

Sponsored by Mouser Electronics and Silicon Labs

IoT Security certification schemes can be complex, but security identities and security certification inheritance can make this aspect of your IoT design quite a bit easier. In this episode of Chalk Talk, Amelia Dalton chats with Mike Dow from Silicon Labs about the current state of global security regulations, the difference between physical and logical attacks, and how Silicon Labs SoCs and modules can help you solve the security demands of your next design.

Click here for more information about Silicon Labs EFR32xG21B SoC & xGM210P Modules with Secure Vault