editor's blog
Subscribe Now

Crappy + Crappy = Not So Bad

We’ve all seen some of the crappy pictures that cell phones have allowed us to take and distribute around the world at lightning speed. (Is there such a concept as “photo spam” – legions of crappy pictures that crowd out the few actual good ones?).

Now… let’s be clear: much of the crappiness comes courtesy of the camera operator (or the state of inebriation of the operator). But even attempts at good composition and topics of true interest can yield a photo that still feels crappy.

Part of the remaining crappiness is a function of resolution: phone cameras traditionally have had less resolution than digital SLRs. So we up the resolution. And, frankly, phone resolution is now up where the early digital SLRs were, so the numbers game is constantly shifting as we pack more pixels into less space on our imaging chips.

But that comes with a cost: smaller pixels capture less light. Because they’re smaller and have fewer impinging photons. So higher-res chips don’t perform as well in low-light situations. (Plus, they traditionally cost more – not a good thing in a phone.)

There is an alternative called Super Resolution (SR), however, and to me it’s reminiscent of the concept of dithering. I also find the name somewhat misleading: it isn’t a super-high-res camera, but rather takes several low-res images and does some mathematical magic on them to combine them into a single image that has higher resolution than the originals. Like four times the resolution. It’s part of the wave of computational photography that seems to be sweeping through these days.

The way it works is that the camera takes several pictures in a row. Each needs to be slightly shifted from the others. In other words, if you take a static subject (a bowl of fruits and flowers) and put the camera on a tripod, this isn’t really going to help. One challenge is that, with too much shifting, you can get “ghosting” – if a hand move between shots, for example, you might see a ghosty-looking hand smeared in the combined version.

It’s been available as a post-processing thing on computers for a while, but the idea now is to make it a native part of cameras – and cameraphones in particular. Which is good, since I can’t remember the last time I saw someone taking a still life shot with a phone on a tripod. (Besides… fruits don’t do duckface well.)

In this case, the slight shaking of the holding hand may provide just the movement needed to make this work. But, of course, you need the algorithms resident in the phone. Which is why CEVA has announced that it has written SR code for its MM3101 vision-oriented DSP platform. They claim that this is the world’s first implementation of SR technology for low-power mobile devices.

Their implementation allows this to work in “a fraction of a second.” Meaning that it could become the default mode for a camera – this could happen completely transparently to the user. They also claim that they’ve implemented “ghost removal” to avoid ghosting problems (making it less likely that the user would want to shut the feature off… although for action shots? Hmmm…).

You can get more detail in their release.

Leave a Reply

featured blogs
Apr 25, 2024
Structures in Allegro X layout editors let you create reusable building blocks for your PCBs, saving you time and ensuring consistency. What are Structures? Structures are pre-defined groups of design objects, such as vias, connecting lines (clines), and shapes. You can combi...
Apr 25, 2024
See how the UCIe protocol creates multi-die chips by connecting chiplets from different vendors and nodes, and learn about the role of IP and specifications.The post Want to Mix and Match Dies in a Single Package? UCIe Can Get You There appeared first on Chip Design....
Apr 18, 2024
Are you ready for a revolution in robotic technology (as opposed to a robotic revolution, of course)?...

featured video

How MediaTek Optimizes SI Design with Cadence Optimality Explorer and Clarity 3D Solver

Sponsored by Cadence Design Systems

In the era of 5G/6G communication, signal integrity (SI) design considerations are important in high-speed interface design. MediaTek’s design process usually relies on human intuition, but with Cadence’s Optimality Intelligent System Explorer and Clarity 3D Solver, they’ve increased design productivity by 75X. The Optimality Explorer’s AI technology not only improves productivity, but also provides helpful insights and answers.

Learn how MediaTek uses Cadence tools in SI design

featured paper

Designing Robust 5G Power Amplifiers for the Real World

Sponsored by Keysight

Simulating 5G power amplifier (PA) designs at the component and system levels with authentic modulation and high-fidelity behavioral models increases predictability, lowers risk, and shrinks schedules. Simulation software enables multi-technology layout and multi-domain analysis, evaluating the impacts of 5G PA design choices while delivering accurate results in a single virtual workspace. This application note delves into how authentic modulation enhances predictability and performance in 5G millimeter-wave systems.

Download now to revolutionize your design process.

featured chalk talk

SLM Silicon.da Introduction
Sponsored by Synopsys
In this episode of Chalk Talk, Amelia Dalton and Guy Cortez from Synopsys investigate how Synopsys’ Silicon.da platform can increase engineering productivity and silicon efficiency while providing the tool scalability needed for today’s semiconductor designs. They also walk through the steps involved in a SLM workflow and examine how this open and extensible platform can help you avoid pitfalls in each step of your next IC design.
Dec 6, 2023
18,875 views