editor's blog
Subscribe Now

Correlating Power with Code

The smarter systems get, the more they are run by some kind of processor running code. So system functions that might have been controlled by circuitry and logic in the past are now turned on and off based on instructions in the system control code. So the power consumption of your system can depend highly on the code that’s running.

This is true even for the processor itself, whose power can depend on how your code runs. IAR has already had a solution for that, called I-scope, that you could use with their I-jet debugging pod to figure out what code was executing when some power event happened.

Well they’ve just extended that capability beyond the processor. You can now, theoretically, probe any points of interest on the board to figure out where power is going and then correlate that back to the code that’s executing. I say “theoretically” because you can’t simply probe a random node; you have to provision the board with a low-value shunt resistor for each power line you want to be able to probe. This provides the ΔV that the probe can measure to develop a power profile.

You can learn more by checking their release.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

Building Automation and Control Systems (BACS)

Sponsored by Analog Devices

Analog Devices' industrial communication products provide building automation engineers with a broad range of Analog IO, Digital IO, Isolation, and communication interfaces that combine low power, robust performance, and improved diagnostics in the smallest possible form factors.

Click here to read more

featured chalk talk

Multi-Protocol Wireless in Embedded Applications

Sponsored by Mouser Electronics and STMicroelectronics

As our devices get smarter, our communication needs get more complex. In this episode of Chalk Talk, Amelia Dalton chats with Marc Hervieu from STMicroelectronics joins me to discuss the various topologies present in today’s wireless connectivity, and how the innovative architecture and flexible use of resources of the STMicroelectronics STM32WB microcontroller can help you with your wireless connectivity concerns in your next embedded design.

Click here for more information about STMicroelectronics Wireless Connectivity Solutions