editor's blog
Subscribe Now

Parallel Accurate SPICE

SPICE has got to be one of the oldest tools still being used by designers. So you might expect it to be a mature market, with a few well-established tools battling for the best performance/capacity and/or accuracy (and occasionally even collaborating).

In fact, it’s typically been more about “or” than “and,” as there are generally two SPICE camps: the fast, high-capacity versions that are “good enough” for everyday repeated use as you explore design options, and sign-off-quality versions that are more accurate, but take longer to complete and can’t handle as large a design.

The tradeoffs between the fast/big and accurate versions are usually about simplifying assumptions and models and such. Parallel execution has also helped, although it’s entirely possible that long-in-the-tooth engines were not designed for effective parallelization.

So ProPlus has announced a new SPICE tool, NanoSpice, that leverages its BSIMProPlus high-accuracy engine for analysis of large designs with quick turnaround. They claim they can handle designs of 50-100 million elements 10-100 times faster than competing “traditional” approaches (many of which can’t complete the larger designs in ProPlus’s benchmarking suite).

While they have made some improvements to the performance of the underlying engine, they give most of the credit to parallelization, which scales relatively well (depending on the design – 24 cores giving 8-12x speed-up on most of their examples, with a multiplier design actually achieving around 20x). But what they underscore with this is that it still uses the model that BSIMProPlus uses, suggesting equivalent accuracy.

They also say that they’ve got a better licensing model for using parallelism. Traditional schemes simply use more licenses as you use more machines, but they say that this was largely configured for occasional bursty usage. If everyone is always using parallelism, then you typically run out of licenses that way.

Their solution? Well, I actually don’t know. They are keeping mum about that. So they say it’s different and better; you’ll have to be the judges of that.

You can find out more in their release.

Leave a Reply

featured blogs
Sep 29, 2020
Our friends at DesignCon and Design News are launching the DesignCon Back-to-School webinar series.  Experts from DesignCon’s conference will share their insights from the electronics chip, board, and system industries, walking through use cases, defining various tools...
Sep 29, 2020
Back in our school days, we were asked to use blue ink while the teachers used red ink for correction. I also remember using multicolor pens to emphasize important points in my assignments and... [[ Click on the title to access the full blog on the Cadence Community site. ]]...
Sep 25, 2020
What do you think about earphone-style electroencephalography sensors that would allow your boss to monitor your brainwaves and collect your brain data while you are at work?...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Product Update: Family of DesignWare Ethernet IP for Time-Sensitive Networking

Sponsored by Synopsys

Hear John Swanson, our product expert, give an update on Synopsys’ DesignWare® Ethernet IP for Time-Sensitive Networking (TSN), which is compliant with IEEE standards and enables predictable guaranteed latency in automotive ADAS and industrial automation SoCs.

Click here for more information about DesignWare Ethernet Quality-of-Service Controller IP

Featured Paper

An Introduction to Automotive LIDAR

Sponsored by Texas Instruments

This white paper is an introduction to industrial and automotive time-of-flight (ToF) light detection and ranging (LIDAR) solutions to serve next-generation autonomous systems.

Click here to download the whitepaper

Featured Chalk Talk

Improving Battery-Life with Ultra Low-Power Processors

Sponsored by Mouser Electronics and NXP

Battery life is critical in today’s mobile device designs, and designing-in ever-larger batteries causes all sorts of awkward compromises. The best strategy is to lower power consumption, and the processor is a great place to start. In this episode of Chalk Talk, Amelia Dalton chats with Nik Jedrzejewski of NXP about the new NXP 7ULP, and how it will help you cut power consumption in your mobile design.

Click here for more information about NXP Semiconductors i.MX 8M Mini Applications Processors