editor's blog
Subscribe Now

Parallel Accurate SPICE

SPICE has got to be one of the oldest tools still being used by designers. So you might expect it to be a mature market, with a few well-established tools battling for the best performance/capacity and/or accuracy (and occasionally even collaborating).

In fact, it’s typically been more about “or” than “and,” as there are generally two SPICE camps: the fast, high-capacity versions that are “good enough” for everyday repeated use as you explore design options, and sign-off-quality versions that are more accurate, but take longer to complete and can’t handle as large a design.

The tradeoffs between the fast/big and accurate versions are usually about simplifying assumptions and models and such. Parallel execution has also helped, although it’s entirely possible that long-in-the-tooth engines were not designed for effective parallelization.

So ProPlus has announced a new SPICE tool, NanoSpice, that leverages its BSIMProPlus high-accuracy engine for analysis of large designs with quick turnaround. They claim they can handle designs of 50-100 million elements 10-100 times faster than competing “traditional” approaches (many of which can’t complete the larger designs in ProPlus’s benchmarking suite).

While they have made some improvements to the performance of the underlying engine, they give most of the credit to parallelization, which scales relatively well (depending on the design – 24 cores giving 8-12x speed-up on most of their examples, with a multiplier design actually achieving around 20x). But what they underscore with this is that it still uses the model that BSIMProPlus uses, suggesting equivalent accuracy.

They also say that they’ve got a better licensing model for using parallelism. Traditional schemes simply use more licenses as you use more machines, but they say that this was largely configured for occasional bursty usage. If everyone is always using parallelism, then you typically run out of licenses that way.

Their solution? Well, I actually don’t know. They are keeping mum about that. So they say it’s different and better; you’ll have to be the judges of that.

You can find out more in their release.

Leave a Reply

featured blogs
Nov 30, 2022
By Chris Clark, Senior Manager, Synopsys Automotive Group The post How Software-Defined Vehicles Expand the Automotive Revenue Stream appeared first on From Silicon To Software....
Nov 30, 2022
Hi, I'm Samuel Afari and I'm a CFD Applications Engineering Intern at Cadence. I am currently a PhD candidate at Embry-Riddle Aeronautical University in Daytona Beach, Florida. I also did my MSc in Aerospace Engineering at the same school, under Dr. Reda Mankbadi. My current ...
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Maximizing Power Savings During Chip Implementation with Dynamic Refresh of Vectors

Sponsored by Synopsys

Drive power optimization with actual workloads and continually refresh vectors at each step of chip implementation for maximum power savings.

Learn more about Energy-Efficient SoC Solutions

featured paper

Algorithm Verification with FPGAs and ASICs

Sponsored by MathWorks

Developing new FPGA and ASIC designs involves implementing new algorithms, which presents challenges for verification for algorithm developers, hardware designers, and verification engineers. This eBook explores different aspects of hardware design verification and how you can use MATLAB and Simulink to reduce development effort and improve the quality of end products.

Click here to read more

featured chalk talk

Current Sense Resistor - WFC & WFCP Series

Sponsored by Mouser Electronics and Vishay

If you are working on a telecom, consumer or industrial design, current sense resistors can give you a great way to detect and convert current to voltage. In this episode of Chalk Talk, Amelia Dalton chats with Clinton Stiffler from Vishay about the what, where and how of Vishay’s WFC and WFCP current sense resistors. They investigate how these current sense resistors are constructed, how the flip-chip design of these current sense resistors reduces TCR compared to other chip resistors, and how you can get started using a Vishay current sense resistor in your next design.

Click here for more information about Vishay / Dale WFC/WFCP Metal Foil Current Sense Resistors