editor's blog
Subscribe Now

Parallel Accurate SPICE

SPICE has got to be one of the oldest tools still being used by designers. So you might expect it to be a mature market, with a few well-established tools battling for the best performance/capacity and/or accuracy (and occasionally even collaborating).

In fact, it’s typically been more about “or” than “and,” as there are generally two SPICE camps: the fast, high-capacity versions that are “good enough” for everyday repeated use as you explore design options, and sign-off-quality versions that are more accurate, but take longer to complete and can’t handle as large a design.

The tradeoffs between the fast/big and accurate versions are usually about simplifying assumptions and models and such. Parallel execution has also helped, although it’s entirely possible that long-in-the-tooth engines were not designed for effective parallelization.

So ProPlus has announced a new SPICE tool, NanoSpice, that leverages its BSIMProPlus high-accuracy engine for analysis of large designs with quick turnaround. They claim they can handle designs of 50-100 million elements 10-100 times faster than competing “traditional” approaches (many of which can’t complete the larger designs in ProPlus’s benchmarking suite).

While they have made some improvements to the performance of the underlying engine, they give most of the credit to parallelization, which scales relatively well (depending on the design – 24 cores giving 8-12x speed-up on most of their examples, with a multiplier design actually achieving around 20x). But what they underscore with this is that it still uses the model that BSIMProPlus uses, suggesting equivalent accuracy.

They also say that they’ve got a better licensing model for using parallelism. Traditional schemes simply use more licenses as you use more machines, but they say that this was largely configured for occasional bursty usage. If everyone is always using parallelism, then you typically run out of licenses that way.

Their solution? Well, I actually don’t know. They are keeping mum about that. So they say it’s different and better; you’ll have to be the judges of that.

You can find out more in their release.

Leave a Reply

featured blogs
Jan 21, 2022
Here are a few teasers for what you'll find in this week's round-up of CFD news and notes. How AI can be trained to identify more objects than are in its learning dataset. Will GPUs really... [[ Click on the title to access the full blog on the Cadence Community si...
Jan 20, 2022
High performance computing continues to expand & evolve; our team shares their 2022 HPC predictions including new HPC applications and processor architectures. The post The Future of High-Performance Computing (HPC): Key Predictions for 2022 appeared first on From Silico...
Jan 20, 2022
As Josh Wardle famously said about his creation: "It's not trying to do anything shady with your data or your eyeballs ... It's just a game that's fun.'...

featured video

Synopsys & Samtec: Successful 112G PAM-4 System Interoperability

Sponsored by Synopsys

This Supercomputing Conference demo shows a seamless interoperability between Synopsys' DesignWare 112G Ethernet PHY IP and Samtec's NovaRay IO and cable assembly. The demo shows excellent performance, BER at 1e-08 and total insertion loss of 37dB. Synopsys and Samtec are enabling the industry with a complete 112G PAM-4 system, which is essential for high-performance computing.

Click here for more information about DesignWare Ethernet IP Solutions

featured paper

How to Fast-Charge Your Supercapacitor

Sponsored by Analog Devices

Supercapacitors (or ultracapacitors) are suited for short charge and discharge cycles. They require high currents for fast charge as well as a high voltage with a high number in series as shown in two usage cases: an automatic pallet shuttle and a fail-safe backup system. In these and many other cases, the fast charge is provided by a flexible, high-efficiency, high-voltage, and high-current charger based on a synchronous, step-down, supercapacitor charger controller.

Click to read more

featured chalk talk

TDK Magnetic Sheets For EMI and NFC Applications

Sponsored by Mouser Electronics and TDK

Today’s dense, complex designs can be extremely challenging from an EMI perspective. Re-designs of PCBs to eliminate problems can be expensive and time consuming, and a manufacturing solution can be preferable. In this episode of Chalk Talk, Amelia Dalton chats with Chris Burket of TDX about Flexield noise suppression sheets, which may be just what your design needs to get EMI under control.

Click here for more information about TDK Flexield Noise Suppression Sheets