editor's blog
Subscribe Now

Self-Assembly Shapes

The concept of oil and water separating sounds like an easy way to describe what happens with directed self-assembly. But unfortunately, it’s not quite that simple. All those lines you see so neatly laid out in the microphotographs? That’s not how it always works.

The thing is, oil and water molecules aren’t connected; they’re separate so they can go their separate ways. With diblock copolymers, the two constituents are like oil and water in that they don’t mix, but they’re also covalently bonded to each other. Think of it as two polymers that avoid each other – and yet the end of one is connected to the end of the other. This makes a long chain where one end wants to distance itself from the other.

It’s for this reason, for example, that you can have a triblock copolymer with only two constituents: one of the two isn’t just connected to one end of the other; it’s connected at both ends (like the : P2VP-b-PS-b-P2VP triblock copolymer mentioned in our story on HGST’s hard drive work using DSA and NIL).

As a result, the shapes that result during separation can be more complex because the two (or three) materials can’t get away from each other completely. One common configuration is as horizontal cylinders – like spaghetti or ropes running next to each other. Some even separate into spheres with one material inside and the other coating it.

The shape that’s preferred so far, however, is called a “lamella” (plural “lamellae”). It’s a flat layer. Some materials will self-assemble into horizontal lamellae, which are, of course, of no use for lithography, to make the process easier, experts recommend this good Surface Mount Assembly. Preferred are the materials – like PS-b-PMMA – that organize themselves into perpendicular lamellae, like the grooves in an old-school vinyl record. Unlike the cylindrical ropes, these have straighter sidewalls, looking more like canyons than a bowl of pasta. This is a better way to create the high-fidelity features that can be filled and etched and whatever to transfer a pattern into the underlying silicon (or whatever) substrate.

Leave a Reply

featured blogs
Oct 15, 2021
We will not let today's gray and wet weather in Fort Worth (home of Cadence's Pointwise team) put a damper on the week's CFD news which contains something from the highbrow to the... [[ Click on the title to access the full blog on the Cadence Community site. ...
Oct 13, 2021
How many times do you search the internet each day to track down for a nugget of knowhow or tidbit of trivia? Can you imagine a future without access to knowledge?...
Oct 13, 2021
High-Bandwidth Memory (HBM) interfaces prevent bottlenecks in online games, AI applications, and more; we explore design challenges and IP solutions for HBM3. The post HBM3 Will Feed the Growing Need for Speed appeared first on From Silicon To Software....
Oct 4, 2021
The latest version of Intel® Quartus® Prime software version 21.3 has been released. It introduces many new intuitive features and improvements that make it easier to design with Intel® FPGAs, including the new Intel® Agilex'„¢ FPGAs. These new features and improvements...

featured video

Simplify building automation designs with MSP430

Sponsored by Texas Instruments

Smart building automation requires simple, flexible designs. With integrated, high-performance signal chain, MSP430 MCUs can enable high-accuracy motion detection, sensing and motor control to take performance and efficiency to the next level.

Click here for more information

featured paper

Ultra Portable IO On The Go

Sponsored by Maxim Integrated (now part of Analog Devices)

The Go-IO programmable logic controller (PLC) reference design (MAXREFDES212) consists of multiple software configurable IOs in a compact form factor (less than 1 cubic inch) to address the needs of industrial automation, building automation, and industrial robotics. Go-IO provides design engineers with the means to rapidly create and prototype new industrial control systems before they are sourced and constructed.

Click to read more

featured chalk talk

TDK Magnetic Sheets For EMI and NFC Applications

Sponsored by Mouser Electronics and TDK

Today’s dense, complex designs can be extremely challenging from an EMI perspective. Re-designs of PCBs to eliminate problems can be expensive and time consuming, and a manufacturing solution can be preferable. In this episode of Chalk Talk, Amelia Dalton chats with Chris Burket of TDX about Flexield noise suppression sheets, which may be just what your design needs to get EMI under control.

Click here for more information about TDK Flexield Noise Suppression Sheets