editor's blog
Subscribe Now

Self-Assembly Shapes

The concept of oil and water separating sounds like an easy way to describe what happens with directed self-assembly. But unfortunately, it’s not quite that simple. All those lines you see so neatly laid out in the microphotographs? That’s not how it always works.

The thing is, oil and water molecules aren’t connected; they’re separate so they can go their separate ways. With diblock copolymers, the two constituents are like oil and water in that they don’t mix, but they’re also covalently bonded to each other. Think of it as two polymers that avoid each other – and yet the end of one is connected to the end of the other. This makes a long chain where one end wants to distance itself from the other.

It’s for this reason, for example, that you can have a triblock copolymer with only two constituents: one of the two isn’t just connected to one end of the other; it’s connected at both ends (like the : P2VP-b-PS-b-P2VP triblock copolymer mentioned in our story on HGST’s hard drive work using DSA and NIL).

As a result, the shapes that result during separation can be more complex because the two (or three) materials can’t get away from each other completely. One common configuration is as horizontal cylinders – like spaghetti or ropes running next to each other. Some even separate into spheres with one material inside and the other coating it.

The shape that’s preferred so far, however, is called a “lamella” (plural “lamellae”). It’s a flat layer. Some materials will self-assemble into horizontal lamellae, which are, of course, of no use for lithography, to make the process easier, experts recommend this good Surface Mount Assembly. Preferred are the materials – like PS-b-PMMA – that organize themselves into perpendicular lamellae, like the grooves in an old-school vinyl record. Unlike the cylindrical ropes, these have straighter sidewalls, looking more like canyons than a bowl of pasta. This is a better way to create the high-fidelity features that can be filled and etched and whatever to transfer a pattern into the underlying silicon (or whatever) substrate.

Leave a Reply

featured blogs
Nov 30, 2023
No one wants to waste unnecessary time in the model creation phase when using a modeling software. Rather than expect users to spend time trawling for published data and tediously model equipment items one by one from scratch, modeling software tends to include pre-configured...
Nov 27, 2023
See how we're harnessing generative AI throughout our suite of EDA tools with Synopsys.AI Copilot, the world's first GenAI capability for chip design.The post Meet Synopsys.ai Copilot, Industry's First GenAI Capability for Chip Design appeared first on Chip Design....
Nov 6, 2023
Suffice it to say that everyone and everything in these images was shot in-camera underwater, and that the results truly are haunting....

featured video

Dramatically Improve PPA and Productivity with Generative AI

Sponsored by Cadence Design Systems

Discover how you can quickly optimize flows for many blocks concurrently and use that knowledge for your next design. The Cadence Cerebrus Intelligent Chip Explorer is a revolutionary, AI-driven, automated approach to chip design flow optimization. Block engineers specify the design goals, and generative AI features within Cadence Cerebrus Explorer will intelligently optimize the design to meet the power, performance, and area (PPA) goals in a completely automated way.

Click here for more information

featured webinar

Rapid Learning: Purpose-Built MCU Software Tools for Data-Driven Embedded IoT Systems

Sponsored by ITTIA

Are you developing an MCU application that captures data of all kinds (metrics, events, logs, traces, etc.)? Are you ready to reduce the difficulties and complications involved in developing an event- and data-centric embedded system? This webinar will quickly introduce you to excellent MCU-specific software options for developing your next-generation data-driven IoT systems. You will also learn how to recognize and overcome data management obstacles. Register today as seats are limited!

Register Now!

featured chalk talk

High Voltage Stackable Dual Phase Constant On Time Controllers - Microchip and Mouser
Sponsored by Mouser Electronics and Microchip
In this episode of Chalk Talk, Chris Romano from Microchip and Amelia Dalton discuss the what, where, and how of Microchip’s high voltage stackable dual phase constant on time controllers. They investigate the stacking capabilities of the MIC2132 controller, how these controllers compare with other solutions on the market, and how you can take advantage of these solutions in your next design.
May 22, 2023
23,754 views