editor's blog
Subscribe Now

Self-Assembly Shapes

The concept of oil and water separating sounds like an easy way to describe what happens with directed self-assembly. But unfortunately, it’s not quite that simple. All those lines you see so neatly laid out in the microphotographs? That’s not how it always works.

The thing is, oil and water molecules aren’t connected; they’re separate so they can go their separate ways. With diblock copolymers, the two constituents are like oil and water in that they don’t mix, but they’re also covalently bonded to each other. Think of it as two polymers that avoid each other – and yet the end of one is connected to the end of the other. This makes a long chain where one end wants to distance itself from the other.

It’s for this reason, for example, that you can have a triblock copolymer with only two constituents: one of the two isn’t just connected to one end of the other; it’s connected at both ends (like the : P2VP-b-PS-b-P2VP triblock copolymer mentioned in our story on HGST’s hard drive work using DSA and NIL).

As a result, the shapes that result during separation can be more complex because the two (or three) materials can’t get away from each other completely. One common configuration is as horizontal cylinders – like spaghetti or ropes running next to each other. Some even separate into spheres with one material inside and the other coating it.

The shape that’s preferred so far, however, is called a “lamella” (plural “lamellae”). It’s a flat layer. Some materials will self-assemble into horizontal lamellae, which are, of course, of no use for lithography, to make the process easier, experts recommend this good Surface Mount Assembly. Preferred are the materials – like PS-b-PMMA – that organize themselves into perpendicular lamellae, like the grooves in an old-school vinyl record. Unlike the cylindrical ropes, these have straighter sidewalls, looking more like canyons than a bowl of pasta. This is a better way to create the high-fidelity features that can be filled and etched and whatever to transfer a pattern into the underlying silicon (or whatever) substrate.

Leave a Reply

featured blogs
Dec 6, 2022
Join our live webinar next Tuesday to learn more about this subject. Introduction Despite the evolution of computer processing capability, improving the efficiency of numerical simulations remains critical. In CFD simulations, the key factor impacting solution quality is mesh...
Dec 6, 2022
Explore quantum computing's impact on cryptography and learn how to prepare SoC designs for post-quantum computing and evolving cryptographic standards. The post Why Now Is the Time to Address Quantum Computing's Impact on Cryptography appeared first on From Silicon To Softw...
Nov 30, 2022
By Joe Davis Sponsored by France's ElectroniqueS magazine, the Electrons d'Or Award program identifies the most innovative products of the… ...
Nov 18, 2022
This bodacious beauty is better equipped than my car, with 360-degree collision avoidance sensors, party lights, and a backup camera, to name but a few....

featured video

Enabling New Paradigms in Memory Design and Development with End-to-End Solutions

Sponsored by Synopsys

The demand for highly customized high-performance memory chips to cater to the needs of HPC, AI, and automotive applications is driving the need for new design paradigms such as DTCO, Design Shift Left, Digitization, and Design-for-Reliability.

Learn more about Memory Solutions

featured chalk talk

Power Conversion for Home Health Care

Sponsored by Mouser Electronics and CUI Inc.

Did you know that the global home medical equipment market is projected to reach over fifty-five billion dollars by 2030? In this episode of Chalk Talk, Bruce Rose from CUI Inc and Amelia Dalton explore the various safety certifications and regulations needed for home health care designs. They also examine the roles that temperature, isolation, and leakage current play in home health care power conversion and the additional requirements needed for power supplies for home health care applications.

Click here for more information about CUI Inc SDM300G-U & SDM300G-UR GaN Adapters