editor's blog
Subscribe Now

The Scribe and the Princess and the Pea

OK, perhaps “scribe line” is more accurate, but I do love a double entendre (even if not salacious). I had a discussion with KLA-Tencor at SPIE Litho recently regarding two new machines they’ve just announced. The first allows detection of defects through spectral analysis. The issue it faces is that it relies on test structures in the scribe line, which are facing two challenges: more of them are needed and there’s less space.

More test features are required both because of new structures like the FinFET and new processing steps, double-patterning in particular. But such structures have taken advantage of a generous scribe line area, dictated originally by the width or kerf of actual mechanical saws way back in the day. The cutting is done by laser now, so the kerf is no longer the issue. The scribe line is actually having a measurable impact on dice per wafer, so shrink it must.

The features that their SpectraShape 9000 analyzer looks for are periodic, and their spectra when illuminated by broadband light can be analyzed twelve ways from Sunday. Each of those features goes in a “box” that is currently 45 µm square. To accommodate the smaller scribe line, they’ve reduced the box size to 25 µm on a side (meaning they can almost put four of them where one of the old ones would have gone).

This has come with higher broadband light power, improved sensitivity, and higher throughput for more sampling.

Meanwhile, we’ve come to the point where the smallest (OK, maybe not smallest, but very small) particle – on the backside of the wafer – can push the upper surface out of the depth of field during exposure. Seriously. Total princess-and-pea situation. It gets worse because smaller particles tend to stick harder due to van der Waals forces. And yet such a particle may transfer to the chuck, sharing the donation with the next wafers to come through.

Rather than noticing the effect of such a particle and then going and figuring out where it is, they’ve created a new use model: inspect the backside.* Of each wafer, before it goes into a process. This prevents the particles from ever getting into the chamber – as long as it can be done quickly enough to keep the line moving.

They’ve boosted sensitivity on their BDR300 by 10x to allow for detection of half-micron defects at 100 wafers/hour. They also have a review capability, allowing inspection of defects down to 0.2 µm. It can be integrated into their CIRCL cluster.

You can find out more about these machines in their release.

 

 

*There’s so much potential for abusing this… especially when looking for defects like paddle marks… but this is a family newspaper. Oh, OK, who am I kidding…

Leave a Reply

featured blogs
May 24, 2019
It's Memorial Day in the US on Monday, and Cadence is off. So today is the day before a holiday. By tradition, I write about...whatever I feel like. So let's go with figures of speech. Even... [[ Click on the title to access the full blog on the Cadence Community s...
May 23, 2019
The Role Of EDA In AI Achieving Effective Verification and Validation of Vehicle E/E Systems – Part 4 Signal Integrity and high-speed design challenges: interview with Mentor’s Todd Westerhoff Designing For The Edge Benefits of a Digitalization Strategy for Electr...
May 23, 2019
Everybody loves webcasts, right? While some may view webcasts as these kids in Ferris Bueller’s class, others love the on-demand technical education available via this popular medium. In an attempt to appeal to the second group, Samtec is pleased to announce a new Chalk...
Jan 25, 2019
Let'€™s face it: We'€™re addicted to SRAM. It'€™s big, it'€™s power-hungry, but it'€™s fast. And no matter how much we complain about it, we still use it. Because we don'€™t have anything better in the mainstream yet. We'€™ve looked at attempts to improve conven...