editor's blog
Subscribe Now

The Scribe and the Princess and the Pea

OK, perhaps “scribe line” is more accurate, but I do love a double entendre (even if not salacious). I had a discussion with KLA-Tencor at SPIE Litho recently regarding two new machines they’ve just announced. The first allows detection of defects through spectral analysis. The issue it faces is that it relies on test structures in the scribe line, which are facing two challenges: more of them are needed and there’s less space.

More test features are required both because of new structures like the FinFET and new processing steps, double-patterning in particular. But such structures have taken advantage of a generous scribe line area, dictated originally by the width or kerf of actual mechanical saws way back in the day. The cutting is done by laser now, so the kerf is no longer the issue. The scribe line is actually having a measurable impact on dice per wafer, so shrink it must.

The features that their SpectraShape 9000 analyzer looks for are periodic, and their spectra when illuminated by broadband light can be analyzed twelve ways from Sunday. Each of those features goes in a “box” that is currently 45 µm square. To accommodate the smaller scribe line, they’ve reduced the box size to 25 µm on a side (meaning they can almost put four of them where one of the old ones would have gone).

This has come with higher broadband light power, improved sensitivity, and higher throughput for more sampling.

Meanwhile, we’ve come to the point where the smallest (OK, maybe not smallest, but very small) particle – on the backside of the wafer – can push the upper surface out of the depth of field during exposure. Seriously. Total princess-and-pea situation. It gets worse because smaller particles tend to stick harder due to van der Waals forces. And yet such a particle may transfer to the chuck, sharing the donation with the next wafers to come through.

Rather than noticing the effect of such a particle and then going and figuring out where it is, they’ve created a new use model: inspect the backside.* Of each wafer, before it goes into a process. This prevents the particles from ever getting into the chamber – as long as it can be done quickly enough to keep the line moving.

They’ve boosted sensitivity on their BDR300 by 10x to allow for detection of half-micron defects at 100 wafers/hour. They also have a review capability, allowing inspection of defects down to 0.2 µm. It can be integrated into their CIRCL cluster.

You can find out more about these machines in their release.

 

 

*There’s so much potential for abusing this… especially when looking for defects like paddle marks… but this is a family newspaper. Oh, OK, who am I kidding…

Leave a Reply

featured blogs
Jul 1, 2022
We all look for 100% perfection and want to turn our dreams (expectations) into reality as far as we can. Are you also looking for a magic wand to turn expectation into reality? The story applies to... ...
Jun 30, 2022
Learn how AI-powered cameras and neural network image processing enable everything from smartphone portraits to machine vision and automotive safety features. The post How AI Helps Cameras See More Clearly appeared first on From Silicon To Software....
Jun 28, 2022
Watching this video caused me to wander off into the weeds looking at a weird and wonderful collection of wheeled implementations....

featured video

Synopsys 112G Ethernet IP Interoperating with Optical Components & Equalizing E-O-E Link

Sponsored by Synopsys

This OFC 2022 demo features the Synopsys 112G Ethernet IP directly equalizing electrical-optical-electrical (E-O-E) channel and supporting retimer-free CEI-112G linear drive for low-power applications.

Learn More

featured paper

3 key considerations for your next-generation HMI design

Sponsored by Texas Instruments

Human-Machine Interface (HMI) designs are evolving. Learn about three key design considerations for next-generation HMI and find out how low-cost edge AI, power-efficient processing and advanced display capabilities are paving the way for new human-machine interfaces that are smart, easily deployable, and interactive.

Click to read more

featured chalk talk

Expanding SiliconMAX SLM to In-Field

Sponsored by Synopsys

In order to keep up with the rigorous pace of today’s electronic designs, we must have visibility into each step of our IC design lifecycle including debug, bring up and in-field operation. In this episode of Chalk Talk, Amelia Dalton chats with Steve Pateras from Synopsys about in-field infrastructure for silicon lifecycle management, the role that edge analytics play when it comes to in-field optimization, and how cloud analytics, runtime agents and SiliconMAX sensor analytics can provide you more information than ever before for the lifecycle of your IC design.

Click here for more information about SiliconMAX Silicon Lifecycle Management