editor's blog
Subscribe Now

3D-IC Planning

During Cadence’s recent CDNlive event, I had a discussion with Kevin Rinebold to talk about 3D-IC planning and design. Actually, it’s more than that, covering all of the multi-die/package combinations like system-in-package (SiP), complex PC boards, and interposer-based solutions. The basic issue is that it’s becoming increasingly difficult to separate die design from board/package design; you may have to plan both together.

Said another way, what used to be board design duties have encroached on die design as packages have started to look more and more like micro-PCBs. The “lumpiness” of old-fashioned design is giving way to a more distributed approach as the “lumps” interact in non-lumpy ways.

Cadence’s approach splits the process in two: planning and implementation. Their focus during our discussion was the planning portion. Why split this part of the process out? Because it’s generally being done by the packaging people (“OSATs”), not the silicon people. So the OSATs will do high-level planning – akin to floorplanning on a die (and may actually involve floorplanning on a substrate).

They hand their results to the implementation folks via an abstract file and, possibly, some constraints to ensure that critical concerns will be properly addressed during design. The abstract file isn’t a view into a database; it is a one-off file, so if changes are made to the plan, new abstracts can (or should) be generated.

Cadence says the key to this is their OrbitIO tool, from their Sigrity group. It allows mechanical planning – things like ensuring that power and ground pins are located near their respective planes. They can also do some power IR drop analysis, although more complete electrical capabilities will come in the future.

There’s one other reason why the planning and implementation are done with completely different tools (mediated by the abstract file): OSATs tend to work on Windows machines, while designers tend to work on Linux machines. No, this is not an invitation to debate. (Oh, wait, Apple isn’t involved in this comparison… OK… never mind…)

Leave a Reply

featured blogs
Nov 25, 2020
It constantly amazes me how there are always multiple ways of doing things. The problem is that sometimes it'€™s hard to decide which option is best....
Nov 25, 2020
[From the last episode: We looked at what it takes to generate data that can be used to train machine-learning .] We take a break from learning how IoT technology works for one of our occasional posts on how IoT technology is used. In this case, we look at trucking fleet mana...
Nov 25, 2020
It might seem simple, but database units and accuracy directly relate to the artwork generated, and it is possible to misunderstand the artwork format as it relates to the board setup. Thirty years... [[ Click on the title to access the full blog on the Cadence Community sit...
Nov 23, 2020
Readers of the Samtec blog know we are always talking about next-gen speed. Current channels rates are running at 56 Gbps PAM4. However, system designers are starting to look at 112 Gbps PAM4 data rates. Intuition would say that bleeding edge data rates like 112 Gbps PAM4 onl...

featured video

Improve SoC-Level Verification Efficiency by Up to 10X

Sponsored by Cadence Design Systems

Chip-level testbench creation, multi-IP and CPU traffic generation, performance bottleneck identification, and data and cache-coherency verification all lack automation. The effort required to complete these tasks is error prone and time consuming. Discover how the Cadence® System VIP tool suite works seamlessly with its simulation, emulation, and prototyping engines to automate chip-level verification and improve efficiency by ten times over existing manual processes.

Click here for more information about System VIP

featured paper

Keys to quick success using high-speed data converters

Sponsored by Texas Instruments

Whether you’re designing an aerospace system, test and measurement equipment or automotive lidar AFE, hardware designers using high-speed data converters face tough challenges with high-frequency inputs, outputs, clock rates and digital interface. Issues might include connecting with your field-programmable gate array, being confident that your first design pass will work or determining how to best model the system before building it. In this article, we take a look at each of these challenges.

Click here to download the whitepaper

Featured Chalk Talk

Mindi Analog Simulator

Sponsored by Mouser Electronics and Microchip

It’s easy to go wrong in the analog portion of your design, particularly if you’re not an analog “expert.” Electrical simulation can help reduce risk and design re-spins. In this episode of Chalk Talk, Amelia Dalton chats with Rico Brooks of Microchip about the MPLAB Mindi tool, and how it can help reduce your design risk.

Click here for more information about MINDI Analog Simulator.