editor's blog
Subscribe Now

Tools vs IP

All of the major EDA companies have had IP. Synopsys started with DesignWare before IP was a real concept; Mentor had IP associated with consulting for several years; Cadence has made a couple of acquisitions – notably memory – to bolster its internal IP efforts.

But the early products of these groups were typically lower-level IP – particularly I/O protocols. Not having to plough through hundreds of pages of a complex protocol spec was an attractive thing – assuming you were willing to trust your vendor to get it right or you had some way of verifying it without having to learn it yourself. And assuming you were willing to pay for IP (not a given in the early days).

Meanwhile, increasingly sophisticated IP from IP companies increasingly requires an accompanying tool to help configure the IP and integrate it with the rest of the design.

So we’ve had tools companies making IP; IP companies making tools.

And the IP part of the EDA play has become far more visible, almost holding its own against the tools themselves. And more and more, a robust IP portfolio is seen as including a processor. Intel/AMD and ARM obviously have their own well-established franchises (of which only ARM is an IP play), but there have been a few other notable players. MIPS was a recognizable contender, even if it never managed to outpace its archrival ARM; it was recently gobbled up by Imagination Technologies.

There has remained another processor company still duking it out with its own unique story. Tensilica promised a configurable processor. In essence, you told the tools what you wanted to do, and, in the end, you got a processor tailored for your application. And the software tools to compile to it.

Well, Tensilica is now betrothed to Cadence. My colleague Jim Turley noted the parallel to Synopsys’s purchase of ARC. Didn’t notice that one? Yeah, that’s because Synopsys bought Virage bought ARC*. And ARC also boasted configurability, and had a focus on the audio business – a space that Tensilica has participated in.

So we have the continued agglomeration of IP and EDA together. Dominated by ARM, followed by Two of the Big Three EDA guys. And Imagination.

Now we have more tools guys making IP; fewer IP guys making tools.

Some discussion today with Cadence reveals a bit more nuance. There’s debate as to whether a Tensilica core really competes with an ARM core. The customizability of the Tensilica core for very specific vertical applications means it gets more deeply embedded, often running with no OS at all. In fact, it is marketed as a data plane, suggesting the need for an accompanying control plane host. Some even say it’s an alternative to RTL, not an alternative to ARM.

Meanwhile, Cadence is promoting a theme of “next-generation IP” that, at first blush, sounds just like what IP has always been. The concept is that you can’t really count on shrink-wrapped IP that’s reusable by all comers. Each customer is going to want specific changes and adaptations that no one else may want (or that they want to keep to themselves).

This has always been the case – to the point where the on-the-shelf IP has historically been a teaser to engage in a consulting contract to give the customer what they actually want. So why is this suddenly a “next generation” thing?

The difference is that this customization is intended to be automated. In other words, the IP base is built with numerous knobs, and a tool accomplishes the customization per the knobs that the customer wants tuned. In fact, it intentionally starts to look more like a tool – a circuit generator – than a piece of circuitry. This has obviously been happening already here and there; it was central to what Tensilica was doing.

So we’ll have a tool guy making IP that looks like a tool.

You can see more about the merger in their release

 

 

 

*And ARC bought Teja Technologies, an event that rendered This Then-Intrepid-Marketing-Exec to explore an opportunity to be This Intrepid Reporter…

Leave a Reply

featured blogs
Apr 9, 2021
You probably already know what ISO 26262 is. If you don't, then you can find out in several previous posts: "The Safest Train Is One that Never Leaves the Station" History of ISO 26262... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 8, 2021
We all know the widespread havoc that Covid-19 wreaked in 2020. While the electronics industry in general, and connectors in particular, took an initial hit, the industry rebounded in the second half of 2020 and is rolling into 2021. Travel came to an almost stand-still in 20...
Apr 7, 2021
We explore how EDA tools enable hyper-convergent IC designs, supporting the PPA and yield targets required by advanced 3DICs and SoCs used in AI and HPC. The post Why Hyper-Convergent Chip Designs Call for a New Approach to Circuit Simulation appeared first on From Silicon T...
Apr 5, 2021
Back in November 2019, just a few short months before we all began an enforced… The post Collaboration and innovation thrive on diversity appeared first on Design with Calibre....

featured video

Learn the basics of Hall Effect sensors

Sponsored by Texas Instruments

This video introduces Hall Effect, permanent magnets and various magnetic properties. It'll walk through the benefits of Hall Effect sensors, how Hall ICs compare to discrete Hall elements and the different types of Hall Effect sensors.

Click here for more information

featured paper

Understanding Functional Safety FIT Base Failure Rate Estimates per IEC 62380 and SN 29500

Sponsored by Texas Instruments

Functional safety standards such as IEC 61508 and ISO 26262 require semiconductor device manufacturers to address both systematic and random hardware failures. Base failure rates (BFR) quantify the intrinsic reliability of the semiconductor component while operating under normal environmental conditions. Download our white paper which focuses on two widely accepted techniques to estimate the BFR for semiconductor components; estimates per IEC Technical Report 62380 and SN 29500 respectively.

Click here to download the whitepaper

Featured Chalk Talk

Nano Pulse Control Clears Issues in the Automotive and Industrial Markets

Sponsored by Mouser Electronics and ROHM Semiconductor

In EV and industrial applications, converting from high voltages on the power side to low voltages on the electronics side poses a big challenge. In order to convert big voltage drops efficiently, you need very narrow pulse widths. In this episode of Chalk Talk, Amelia Dalton chats with Satya Dixit from ROHM about new Nano Pulse Control technology that changes the game in DC to DC conversion.

More information about ROHM Semiconductor BD9V10xMUF Buck Converters