editor's blog
Subscribe Now

Sensor Fusion Sea Change

As I have observed and listened to the things that folks in the sensor fusion business (whether purveyors of sensors or sensor-agnostic) have been saying, there’s something of a change in the air, and it was reinforced at CES. The focus of fusion is shifting.

At the very bottom of the fusion stack are complex mathematical relationships that turn, for example, individual sensor readings into higher-level orientation information. Clearly, there’s been a period where getting that right and getting it all to be computed in real time was an effort. But that time appears to be over. Things are moving up in abstraction, but there’s a big qualitative change that’s coming with that.

The math, however, complex, more or less provides a “right answer” that’s not subject to judgment. All sensor fusion implementations would presumably agree on the answer.

The bigger effort now is not on getting the math right. Now the issue is: which sensor should I listen to? For example, if the mag sensor shows movement but the accelerometer hasn’t budged, should the mag data be ignored? Or, more perniciously, if a gyro indicates movement but the mag doesn’t, then ignore the gyro… but if the mag indicates movement and the gyro doesn’t then ignore the mag?

As will be evident in various stories I’ll elaborate on over the next little while, the challenge these days seems to be on comparing various inputs and then deciding whom to believe. And this feeds into a higher-level concept that I heard mentioned numerous times at CES: context.

Context has implications far beyond simple questions of, for instance, orientation. But judging which sensors to acknowledge and which to ignore is really a primitive context exercise.

And here’s where it’s qualitatively different from what’s come before: There is no right answer. Well, I mean, I guess there is a right answer (or, perhaps stated more accurately, any of us that have had our devices try to be too clever and guess what we’re doing, there are many wrong answers). But this is not a math problem: It’s a heuristic problem. Which means that ten different fusions algorithms may approach the problem ten different ways.

This is actually good for competition in that there can be true differentiation. It also means that several completely different approaches may all work well, which suppresses that differentiation.

The bottom line to me is that it all feels slightly more messy and complex than the complex math. Structuring an algorithm replete with heuristics can be tough – if you want to make it flexible enough to accommodate frequent changes and refinements to the algorithm. Over time, I wouldn’t be surprised to see this be a strong contributing factor in determining who wins and who loses in the long term.

Leave a Reply

featured blogs
Sep 18, 2021
Projects with a steampunk look-and-feel incorporate retro-futuristic technology and aesthetics inspired by 19th-century industrial steam-powered machinery....
Sep 17, 2021
Dear BoardSurfers, I want to unapologetically hijack the normal news and exciting feature information that you are accustomed to reading about in the world of PCB Design blogs to eagerly let you know... [[ Click on the title to access the full blog on the Cadence Community s...
Sep 15, 2021
Learn how chiplets form the basis of multi-die HPC processor architectures, fueling modern HPC applications and scaling performance & power beyond Moore's Law. The post What's Driving the Demand for Chiplets? appeared first on From Silicon To Software....
Aug 5, 2021
Megh Computing's Video Analytics Solution (VAS) portfolio implements a flexible and scalable video analytics pipeline consisting of the following elements: Video Ingestion Video Transformation Object Detection and Inference Video Analytics Visualization   Because Megh's ...

featured video

Maxim Integrated is now part of Analog Devices

Sponsored by Maxim Integrated (now part of Analog Devices)

What if we didn’t wait around for the amazing inventions of tomorrow – and got busy creating them today?

See What If: analog.com/Maxim

featured paper

Choose a high CMTI gate driver that cuts your SiC switch dead-time

Sponsored by Maxim Integrated (now part of Analog Devices)

As GaN and SiC FETs begin to replace MOSFET and IGBT technologies in power switching applications, this Maxim paper discusses the key considerations when selecting an isolated gate driver. The paper explains the importance of CMTI and propagation delay skew and presents an isolated gate driver IC ideal for use with these new power transistors.

Click to read more

featured chalk talk

WiFi 6 & 6E: Strengthening Smart Home Enablement

Sponsored by Mouser Electronics and Qorvo

Demands on WiFi are growing exponentially, and our aging standards and technology are struggling to keep up. Luckily, WiFi 6 and 6E represent a leap in WiFi capabilities for our systems. In this episode of Chalk Talk, Amelia Dalton chats with Tony Testa of Qorvo about the ins and outs of WiFi 6 and 6E with their increased speed, capacity, and efficiency.

Click here for more information about Qorvo Wi-Fi® 6 Solution