editor's blog
Subscribe Now

An Orientation Sensor

We now have a new category in the IMU world: Bosch Sensortec has announced the first of what they call Application-Specific Sensor Nodes, or ASSNs. They have dubbed this particular device an Absolute Orientation Sensor. It looks strikingly like an all-in-one sensor hub, with an accelerometer, a gyro, a magnetometer, and a 32-bit ARM-based microcontroller (source not disclosed).

The difference is that a sensor hub per se leaves the software to be executed on the micro pretty wide open for the user to define. The BNO055, by contrast, is really intended to combine the motion sensors via built-in fusion on the micro so that it looks like a higher-level orientation sensor. It essentially bumps up the level of abstraction, burying the sensors and micro inside something more akin to a black box. Data is communicated pre-computed as quaternions rather than raw.

Power is addressed by allowing a stand-by mode where the gyroscope – always the power hog – can be put to sleep. When the accelerometer detects motion, it can then wake the gyro – which responds in a few nanoseconds – so that it can intercept any rotational motion. This assumes, of course, that any rotation missed during that wake-up is negligible. (Quick math sanity check says that if an object rotates, say, 6 degrees in 10 ns, then that’s 60 degrees in 100 ns or a full rotation in 600 ns… divide by 10 to get 60 ns, multiply by a billion to get 60 s, so that would be 100,000,000 RPM… yeah, not even Washington DC can spin anything that fast…)

So full power is around 11 or 12 mA; in motion-wakeable stand-by it goes down to 150 µA. If you put everything to sleep and wake it through I2C instead, you can get down to the 20-µA range.

You can find more on this device in their release

Leave a Reply

featured blogs
Apr 18, 2021
https://youtu.be/afv9_fRCrq8 Made at Target Oakridge (camera Ziyue Zhang) Monday: "Targeting" the Open Compute Project Tuesday: NUMECA, Computational Fluid Dynamics...and the America's... [[ Click on the title to access the full blog on the Cadence Community s...
Apr 16, 2021
Spring is in the air and summer is just around the corner. It is time to get out the Old Farmers Almanac and check on the planting schedule as you plan out your garden.  If you are unfamiliar with a Farmers Almanac, it is a publication containing weather forecasts, plantin...
Apr 15, 2021
Explore the history of FPGA prototyping in the SoC design/verification process and learn about HAPS-100, a new prototyping system for complex AI & HPC SoCs. The post Scaling FPGA-Based Prototyping to Meet Verification Demands of Complex SoCs appeared first on From Silic...
Apr 14, 2021
By Simon Favre If you're not using critical area analysis and design for manufacturing to… The post DFM: Still a really good thing to do! appeared first on Design with Calibre....

featured video

The Verification World We Know is About to be Revolutionized

Sponsored by Cadence Design Systems

Designs and software are growing in complexity. With verification, you need the right tool at the right time. Cadence® Palladium® Z2 emulation and Protium™ X2 prototyping dynamic duo address challenges of advanced applications from mobile to consumer and hyperscale computing. With a seamlessly integrated flow, unified debug, common interfaces, and testbench content across the systems, the dynamic duo offers rapid design migration and testing from emulation to prototyping. See them in action.

Click here for more information

featured paper

From Chips to Ships, Solve Them All With HFSS

Sponsored by Ansys

There are virtually no limits to the design challenges that can be solved with Ansys HFSS and the new HFSS Mesh Fusion technology! Check out this blog to know what the latest innovation in HFSS 2021 can do for you.

Click here to read the blog post

featured chalk talk

Cutting the AI Power Cord: Technology to Enable True Edge Inference

Sponsored by Mouser Electronics and Maxim Integrated

Artificial intelligence and machine learning are exciting buzzwords in the world of electronic engineering today. But in order for artificial intelligence or machine learning to get into mainstream edge devices, we need to enable true edge inference. In this episode of Chalk Talk, Amelia Dalton chats with Kris Ardis from Maxim Integrated about the MAX78000 family of microcontrollers and how this new microcontroller family can help solve our AI inference challenges with low power, low latency, and a built-in neural network accelerator. 

Click here for more information about Maxim Integrated MAX78000 Ultra-Low-Power Arm Cortex-M4 Processor