editor's blog
Subscribe Now

20-nm Test Enhancements

ITC is usually the time when the EDA companies announce their coolest test-related advances. While Mentor announced their IJTAG support, Synopsys focused its agenda largely on the issues surrounding the 20-nm node. Each node has its particular failure modes, and tests need to be added or refocused to catch those failures.

Two of the advances they announced involved memory and multicore; we’ll take them in order.

They first announced a change to their STAR memory system, both adding and removing hierarchy. The architecture of their memory test has been made hierarchical, with an SMS Server at the top that is connected to one or more chains of SMS Processors. Each processor handles several individual memory blocks. Cache and other high-speed memory associated with higher-end cores can also be mapped to a test bus that is managed by an SMS Processor.

Where hierarchy was taken away was in the wrapping of the memory blocks. Regardless of the type of memory, there’s a wrapper to interface it to the SMS Processor. But a true wrapper adds a level of hierarchy, and this can wreak havoc with constraints and such. So what they’ve done is keep the wrapper at the same hierarchical level as the memory. Which makes it more of a shim than a wrapper.

On the multicore side of things, they have shared pins to allow concurrent testing of multiple cores. Each core has its own internal test compression, and if all of the cores are identical, then ATPG can create a set of patterns that all cores can test concurrently. If the cores aren’t identical (but similar), then the ATPG handles one of the cores, and then goes to the other cores to see what was fortuitously covered by the vectors already created; it can then create supplementary vectors to patch any other coverage holes. Those extra vectors will have no impact on the cores already fully covered.

Of course, this raises the question, if you’re testing these all in parallel and one fails, how will you know which one? They have more than one output, and by looking at the outputs along with the patterns, they can positively ID where the issue was.

This sharing of the test pins (note that it’s not muxing the pins, it’s literally sharing) reduces both the test time and the number of pins required.

These are some of the highlights of what they announced; you can find more in their release.

Leave a Reply

featured blogs
Jan 19, 2021
If you know someone who has a birthday or anniversary or some other occasion coming up, you may consider presenting their present in a Prank-O gift box....
Jan 19, 2021
As promised, we'€™re back with some more of the big improvements that are part of the QIR2 update release of 17.4 (HotFix 013). This time, everything is specific to our Allegro ® Package Designer... [[ Click on the title to access the full blog on the Cadence Communit...
Jan 19, 2021
I'€™ve been reading year-end and upcoming year lists about the future trends affecting technology and electronics. Topics run the gamut from expanding technologies like 5G, AI, electric vehicles, and various realities (XR, VR, MR), to external pressures like increased gover...
Jan 14, 2021
Learn how electronic design automation (EDA) tools & silicon-proven IP enable today's most influential smart tech, including ADAS, 5G, IoT, and Cloud services. The post 5 Key Innovations that Are Making Everything Smarter appeared first on From Silicon To Software....

featured paper

Overcoming Signal Integrity Challenges of 112G Connections on PCB

Sponsored by Cadence Design Systems

One big challenge with 112G SerDes is handling signal integrity (SI) issues. By the time the signal winds its way from the transmitter on one chip to packages, across traces on PCBs, through connectors or cables, and arrives at the receiver, the signal is very distorted, making it a challenge to recover the clock and data-bits of the information being transferred. Learn how to handle SI issues and ensure that data is faithfully transmitted with a very low bit error rate (BER).

Click here to download the whitepaper

Featured Chalk Talk

SLX FPGA: Accelerate the Journey from C/C++ to FPGA

Sponsored by Silexica

High-level synthesis (HLS) brings incredible power to FPGA design. But harnessing the full power of HLS with FPGAs can be difficult even for the most experienced engineering teams. In this episode of Chalk Talk, Amelia Dalton chats with Jordon Inkeles of Silexica about using the SLX FPGA tool to truly harness the power of HLS with FPGAs, getting better results faster - regardless of whether you are approaching from the hardware or software domain.

More information about SLX FPGA