editor's blog
Subscribe Now

EUV Movement Towards HVM

When last we talked with Cymer, they had just announced their PrePulse technology that gets more of the energy out of the droplets they blast with a laser. They had achieved 50-W output.

That’s only half-way to what’s needed for production, and, at the time, it was an “open-loop” result. That is, not something that could be repeated over and over in a production setting.

In my discussion with them at Semicon West, they now have 50 W working on a sustained, closed-loop basis (for five hours). And they have achieved 90 W in short open-loop bursts.

But there are lots of other characteristics besides simple power that are important for production viability.

  • Duty cycle: after they run the system for a while, things heat up. Literally. For that and a number of reasons, they have to give the machine a break or else the power rolls off. Right now they’re running at 40% duty cycle; they’re working to get that (closer) to 100%.
  • Dose stability: their five-hour runs have resulted in 90% of dice having less than 1% dose error.
  • Availability: if the machine is always down or needs lots of maintenance, well, that’s a problem. They’re now claiming 70% up-time.
  • Collector longevity: at some point, having been bombarded with pulses, the collector will start to lose reflectivity. It would then need to be replaced – meaning downtime and cost. So far they say that they’ve gone above 30 billion pulses without seeing any reflectivity degradation.

Meanwhile, efforts to increase power depend on three separate factors: input power, “conversion” efficiency – how much of that input power gets released from a pulsed droplet, and collector efficiency.

Their PrePulse technology has satisfied them on the second item; their efforts at this point are in increasing the input power (they’ve demonstrated up to 17 kW) and improving collector efficiency. This takes place in what they call their “HVM II” model, which is being integrated now.

Leave a Reply

featured blogs
Oct 1, 2020
One of my chums just took delivery of a low-cost Geiger counter from eBay and he asks what he should do if it starts clicking furiously....
Oct 1, 2020
In September 2020, we released the RF path of our new Picture Search, updated the design and data of our Discrete Wire data, rolled out a brand new design for our Application Tooling page, and worked on a variety of other areas of content on Samtec.com. Here are the major upd...
Oct 1, 2020
This is one of my occasional posts where I update some posts that I covered earlier, but which don't justify an entire post of their own. However, I ended up with so much material that I split... [[ Click on the title to access the full blog on the Cadence Community sit...
Sep 25, 2020
[From the last episode: We looked at different ways of accessing a single bit in a memory, including the use of multiplexors.] Today we'€™re going to look more specifically at memory cells '€“ these things we'€™ve been calling bit cells. We mentioned that there are many...

Featured Video

Product Update: Synopsys and SK hynix Discuss HBM2E at 3.6Gbps

Sponsored by Synopsys

In this video interview hear from Keith Kim, Team Leader of DRAM Technical Marketing at SK hynix, discussing the wide adoption of HBM2E at 3.6Gbps and successful collaboration with Synopsys to validate the DesignWare HBM2E IP at the maximum speed.

Click here for more information about DesignWare DDR IP Solutions

Featured Paper

The Cryptography Handbook

Sponsored by Maxim Integrated

The Cryptography Handbook is designed to be a quick study guide for a product development engineer, taking an engineering rather than theoretical approach. In this series, we start with a general overview and then define the characteristics of a secure cryptographic system. We then describe various cryptographic concepts and provide an implementation-centric explanation of physically unclonable function (PUF) technology. We hope that this approach will give the busy engineer a quick understanding of the basic concepts of cryptography and provide a relatively fast way to integrate security in his/her design.

Click here to download the whitepaper

Featured Chalk Talk

Electronic Fuses (eFuses)

Sponsored by Mouser Electronics and ON Semiconductor

Today’s advanced designs demand advanced circuit protection. The days of replacing old-school fuses are long gone, and we need solutions that provide more robust protection and improved failure modes. In this episode of Chalk Talk, Amelia Dalton chats with Pramit Nandy of ON Semiconductor about the latest advances in electronic fuses, and how they can protect against overcurrent, thermal, and overvoltage.

More information about ON Semiconductor Electronic Fuses